Bridges are important components of the transportation systems. Their loss of functionality in case of a strong earthquake may affect the after-event emergency response in a negative way. Accordingly, it is very important to deeply investigate all the aspects of seismic action that may affect the bridge responses, also considering that transportation needs and technology improvements are encouraging the construction of bridge structures having more and more long and complex structural configurations. This study focuses on one of the aspects that may affect the seismic behaviour in particular in case of medium and long length structures, that is the spatial variation of seismic ground motion. There is a vast literature about the topic, however, it is based on accelerograms generated artificially, instead originality of this study is that it is based on real accelerograms recorded by arrays. Accordingly, the nonlinear dynamic response of a series of reinforced concrete bridges under uniform and non-uniform earthquake ground motions in longitudinal, transversal and vertical directions is investigated. Bridges differ in total length, irregularity in geometry and modeling assumptions i.e. distribution of masses throughout the structure and deck to pier connections. The structures are excited by three sets of spatially variable ground motions derived from real records of Parkfield 2004 and San Simeon 2003 earthquakes available from the UPSAR and Turkey Flat Valley arrays. Accelerations and displacements of pier top and shear forces and bending moments at pier base are calculated and are given as ratio of maximum response to asynchronous motion to the maximum response to synchronous motion for comparison. As a result, dynamic response of bridges is strongly affected by the above phenomenon. The amplification/reduction of the responses was not constant nor easily predictable, therefore it is concluded that nonlinear dynamic analysis should be performed for assessment and design of the reinforced concrete bridges.
I ponti sono importanti componenti dei sistemi di trasportazione. La perdità delle loro funzionalità potrebbe influenzare la risposta di emergenza post-evento negativamente nel caso di un terremoto forte. Di conseguenza, è molto importante investigare su tutti gli aspetti dell’azione sismica profondamente che potrebbero influenzare le risposte dei ponti, anche considerando che le necessità di trasportazione e gli sviluppi tecnologici favoriscono la costruzione delle strutture di ponti che hanno configurazioni strutturali complesse e lunghe sempre di più. Questo studio si concentra su uno degli aspetti che potrebbe influenzare il comportamento sismico soprattutto nel caso dei ponti con le lunghezze medie e grandi, cioè sulla variabilità spaziale dei moti sismici. C’è molta letteratura sull’argomento però esso è basato sugli accelerogrammi generati artificialmente, invece originalità di questo studio è che è basato sull’uso degli accelerogrammi veri registrati dalle reti accelerometriche. Di conseguenza, la risposta dinamica nonlineare di una serie di ponti in calcestruzzo armato soggetta ai moti sismici asincroni e sincroni nelle direzioni longitudinali, trasversali e verticali è investigata. I ponti si differenziano nella lunghezza totale, nell’irregolarità in geometria e negli ipotesi di modellazione cioè la distribuzione delle masse per tutta la struttura e connessione tra le pile e l’impalcato. Le strutture sono sollecitate da tre serie di moti sismici spazialmente variabili derivate da accelerogrammi veri di Parkfield 2004 e San Simeon 2003 terremoti registrati dalle reti accelerometriche di UPSAR e Turkey Flat Valley. Le accelerazioni e gli spostamenti in sommità delle pile e le forze di taglio e i momenti flettenti alla base delle pile sono calcolate e i rapporti tra la risposta massima assoluta al moto asincrono e la risposta massima assoluta al moto sincrono sono dati. Di conseguenza, la risposta dinamica dei ponti è fortemente influenzata dal fenomeno sopra accennato. Amplificazione o riduzione delle risposte non erano ne costanti ne prevedibili facilmente, per questo motivo è concluso che l’analisi dinamica nonlineare è consigliabile per la valutazione e la progettazione dei ponti in calcestruzzo armato.
Study of the seismic response of medium and long length bridges considering spatial variation of in-situ recorded ground motions
SÖZERI, MERT
2017/2018
Abstract
Bridges are important components of the transportation systems. Their loss of functionality in case of a strong earthquake may affect the after-event emergency response in a negative way. Accordingly, it is very important to deeply investigate all the aspects of seismic action that may affect the bridge responses, also considering that transportation needs and technology improvements are encouraging the construction of bridge structures having more and more long and complex structural configurations. This study focuses on one of the aspects that may affect the seismic behaviour in particular in case of medium and long length structures, that is the spatial variation of seismic ground motion. There is a vast literature about the topic, however, it is based on accelerograms generated artificially, instead originality of this study is that it is based on real accelerograms recorded by arrays. Accordingly, the nonlinear dynamic response of a series of reinforced concrete bridges under uniform and non-uniform earthquake ground motions in longitudinal, transversal and vertical directions is investigated. Bridges differ in total length, irregularity in geometry and modeling assumptions i.e. distribution of masses throughout the structure and deck to pier connections. The structures are excited by three sets of spatially variable ground motions derived from real records of Parkfield 2004 and San Simeon 2003 earthquakes available from the UPSAR and Turkey Flat Valley arrays. Accelerations and displacements of pier top and shear forces and bending moments at pier base are calculated and are given as ratio of maximum response to asynchronous motion to the maximum response to synchronous motion for comparison. As a result, dynamic response of bridges is strongly affected by the above phenomenon. The amplification/reduction of the responses was not constant nor easily predictable, therefore it is concluded that nonlinear dynamic analysis should be performed for assessment and design of the reinforced concrete bridges.File | Dimensione | Formato | |
---|---|---|---|
MertSozeri_LMThesis.pdf
non accessibile
Descrizione: Thesis Text
Dimensione
17.35 MB
Formato
Adobe PDF
|
17.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/144622