The field of organic electronics, and in particular of organic field effect transistors (OFETs), gained much interest in the last years. These devices exploit solution-processed materials, allowing a formulation of inks that can be deposited at low temperature using standard printing techniques. Despite the performances of the transistors are significantly lower than those of the inorganic counterpart, they show interesting features such as flexibility, recyclability, biocompatibility, along with low-cost and large area manufacturing capability. The starting point for this thesis work was the technology developed by the Printed and Molecular Electronics group, based at the Center for Nano Science and Technology (CNST) of the Istituto Italiano di Tecnologia (IIT, Italian Institute of Technology) in Milan. In the first part of this thesis work, the printed organic transistors were realized and characterized. A model was proposed, to describe the behaviour and all the relevant parameters of these devices. After analyzing the behaviour of the single transistors, the focus moved to integrated circuits, namely on the D-latch circuit. With respect to the solution previously implemented in this group, an alternative fully-complementary design was proposed, better suited to the adopted technology and allowing an increased robustness. The proposed circuit, together with complementary NAND and NOR gates, was realized and characterized. The results achieved were coherent with the previously extracted model. The last part of the work involved the design of a front-end charge amplifier for a flexible piezolectric sensor, using the same technology. The proposed topology was accurately designed according to the previously extracted model, taking in consideration all the limitations set by this technology. The circuito was fabricated, its functionality was verified and its frequency response was measured. To date, this represents the first charge amplifier realized with OFETs, one of the few analog amplifiers reported in the field of printed electronics and the first amplifier realized with the technology developed at IIT.
Il campo dell’elettronica organica, ed in particolare dei transistor organici ad effetto di campo (OFETs, Organic Field Effect Transistors), ha suscitato grande interesse negli ultimi anni. Questi dispositivi sfruttano dei materiali processati in soluzione, permettendo la formulazione di inchiostri che possono essere depositati utilizzando tecniche di stampa consolidate. Sebbene le prestazioni di tali transistor siano significativamente più basse rispetto alla rispettiva controparte inorganica, essi mostrano interessanti caratteristiche come la flessibilità, la riciclabilità, la biocompatibilità ed allo stesso tempo la possibilità di produzione a basso costo e su larga area. Il punto di partenza per questo lavoro di tesi è rappresentato dalla tecnologia sviluppata all’interno del gruppo di ricerca in Printed and Molecular Electronics, situato all’interno del Center for Nano Science and Technology (CNST) dell’Istituto Italiano di Tecnologia (IIT) a Milano. Nella prima parte del lavoro, i transistor organici stampati sono stati realizzati e caratterizzati. E’ stato successivamente proposto un modello per descriverene il comportamento e tutti i parametri rilevanti. Dopo aver analizzato il comportamento dei singoli transistor, l’attenzione si è spostata verso i circuiti integrati, in particolare sul circuito D-latch. Alternativamente alla soluzione precedentemente adottata nel gruppo, è stata proposta una topologia totalmente complementare, che meglio si adatta alla tecnologia e permette una migliore robustezza. Il circuito proposto, assieme a delle porte NAND e NOR complementari, sono stati realizzati e caratterizzati. I parametri ottenuti sono risultati coerenti con il modello precedentemente estratto. L’ultima parte del lavoro ha riguardato la progettazione di un amplificatore di carica per un sensore piezoelettrico flessibile, utilizzando la stessa tecnologia. La topologia proposta è stata accuratamente progettata basandosi sul modello precedentemente estratto e prendendo in considerazione tutte le limitazioni imposte dalla tecnologia. Il circuito è stato poi realizzato, verificata la sua funzionalità e misurata la sua risposta in frequenza. Ad oggi, questo rappresenta il primo amplificatore di carica realizzato con OFETs, uno dei pochi amplificatori analogici riportati nel campo dell’elettronica stampata ed il primo amplificatore realizzato con la tecnologia sviluppata all’IIT.
Fully-printed complementary analog and digital polymer integrated circuits
SOTTOCORNOLA, ANDREA
2017/2018
Abstract
The field of organic electronics, and in particular of organic field effect transistors (OFETs), gained much interest in the last years. These devices exploit solution-processed materials, allowing a formulation of inks that can be deposited at low temperature using standard printing techniques. Despite the performances of the transistors are significantly lower than those of the inorganic counterpart, they show interesting features such as flexibility, recyclability, biocompatibility, along with low-cost and large area manufacturing capability. The starting point for this thesis work was the technology developed by the Printed and Molecular Electronics group, based at the Center for Nano Science and Technology (CNST) of the Istituto Italiano di Tecnologia (IIT, Italian Institute of Technology) in Milan. In the first part of this thesis work, the printed organic transistors were realized and characterized. A model was proposed, to describe the behaviour and all the relevant parameters of these devices. After analyzing the behaviour of the single transistors, the focus moved to integrated circuits, namely on the D-latch circuit. With respect to the solution previously implemented in this group, an alternative fully-complementary design was proposed, better suited to the adopted technology and allowing an increased robustness. The proposed circuit, together with complementary NAND and NOR gates, was realized and characterized. The results achieved were coherent with the previously extracted model. The last part of the work involved the design of a front-end charge amplifier for a flexible piezolectric sensor, using the same technology. The proposed topology was accurately designed according to the previously extracted model, taking in consideration all the limitations set by this technology. The circuito was fabricated, its functionality was verified and its frequency response was measured. To date, this represents the first charge amplifier realized with OFETs, one of the few analog amplifiers reported in the field of printed electronics and the first amplifier realized with the technology developed at IIT.File | Dimensione | Formato | |
---|---|---|---|
2018_12_Sottocornola.pdf
solo utenti autorizzati dal 04/12/2021
Descrizione: Testo della tesi
Dimensione
73.22 MB
Formato
Adobe PDF
|
73.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/144718