Isobutene is a four-carbon olefin, largely used in polymer and rubber industry. In fact, this molecule is the monomer for the production of polyisobutene and butyl rubber. These polymerisation reactions require a high degree of purity of the isobutene, which can be obtained through the cracking reaction of methyl tert-butyl ether (MTBE), catalysed by acid oxides solids. In this work of thesis, the production of isobutene through catalytic cracking has been studied over appropriate catalysts composed by silico-aluminates. Particularly, some catalysts were prepared in laboratory by impregnation of silica-based supports with an aluminium salt and by subsequent calcination. These materials have been analysed with different techniques in order to point out the morphology, the acidity, as well as the composition, distribution and geometrical structure of the active phase. The analyses have shown a structure and an acid strength of the active phase comparable with the properties of a similar catalyst produced and used at industrial scale. Subsequently, catalytic materials have been tested for the MTBE cracking reaction using a lab-scale rig. The performance of such catalysts has shown no difference with respect to that obtained by testing the industrial used catalyst. Nevertheless, all the samples have shown a certain degree of deactivation during the reaction. The reason of the deactivation has been studied in detail through chemical-physical characterisation of the discharged samples. It has been observed how this deactivation is caused by carbon deposits over the catalytic surface, produced by isobutene polymerization inside the pores of the catalytic material. Finally, some attempts of regeneration have been studied. It has been observed how an in-situ combustion of these carbon deposits is able to restore initial conditions, although totally ineffective in stabilizing the catalytic performance, as it increases the deactivation rate of the catalyst itself in the desired MTBE cracking reaction.
L'isobutene è una olefina con quattro atomi di carbonio, ampiamente utilizzata nell’industria dei polimeri e delle gomme. Infatti, questa molecola funge da monomero per la produzione di poliisobutene e della gomma butilica. Tali reazioni di polimerizzazione richiedono un elevato grado di purezza dell’isobutene, che si può ottenere tramite la reazione di cracking del metil tert-butil etere (MTBE) catalizzata da ossidi solidi acidi. In questo lavoro di tesi, la produzione di isobutene tramite cracking catalitico è stata studiata su opportuni catalizzatori composti da silico-alluminati. In particolare, alcuni catalizzatori sono stati preparati in laboratorio tramite impregnazione di supporti a base di silice tramite un sale di alluminio e successiva calcinazione. Questi materiali sono stati analizzati con diverse tecniche al fine di evidenziarne la morfologia, le caratteristiche acide, nonché la composizione, la distribuzione e la struttura geometrica della fase attiva. Le analisi hanno mostrato una struttura e una forza acida della fase attiva comparabili con le proprietà di un catalizzatore simile prodotto e utilizzato nella scala industriale. Successivamente, i materiali catalitici sono stati testati nella reazione di cracking di MTBE utilizzando un impianto in scala di laboratorio. Le prestazioni di tali catalizzatori non hanno mostrato differenze con quelle ottenute testando il catalizzatore industrialmente utilizzato. Ciò nonostante, tutti i campioni hanno mostrato un grado di disattivazione durante la reazione. La causa della disattivazione è stata dettagliatamente studiata tramite caratterizzazione chimico-fisica dei campioni scaricati. Si è osservato come questa disattivazione sia dovuta a depositi carboniosi sulla superficie catalitica, prodotti da polimerizzazione dell’isobutene nei pori del materiale catalitico. Infine, alcune modalità di rigenerazione sono state studiate. Si è osservato come una combustione in-situ di tali depositi carboniosi sia in grado di ripristinare le condizioni iniziali, sebbene totalmente inefficace nello stabilizzare le prestazioni catalitiche in quanto incrementa la velocità di disattivazione dello stesso catalizzatore nella reazione desiderata di cracking di MTBE.
Characterization and testing of catalysts active for high-quality isobutene production from MTBE cracking
PEIRONE, DEBORAH;PERON, ELENA MARIA
2017/2018
Abstract
Isobutene is a four-carbon olefin, largely used in polymer and rubber industry. In fact, this molecule is the monomer for the production of polyisobutene and butyl rubber. These polymerisation reactions require a high degree of purity of the isobutene, which can be obtained through the cracking reaction of methyl tert-butyl ether (MTBE), catalysed by acid oxides solids. In this work of thesis, the production of isobutene through catalytic cracking has been studied over appropriate catalysts composed by silico-aluminates. Particularly, some catalysts were prepared in laboratory by impregnation of silica-based supports with an aluminium salt and by subsequent calcination. These materials have been analysed with different techniques in order to point out the morphology, the acidity, as well as the composition, distribution and geometrical structure of the active phase. The analyses have shown a structure and an acid strength of the active phase comparable with the properties of a similar catalyst produced and used at industrial scale. Subsequently, catalytic materials have been tested for the MTBE cracking reaction using a lab-scale rig. The performance of such catalysts has shown no difference with respect to that obtained by testing the industrial used catalyst. Nevertheless, all the samples have shown a certain degree of deactivation during the reaction. The reason of the deactivation has been studied in detail through chemical-physical characterisation of the discharged samples. It has been observed how this deactivation is caused by carbon deposits over the catalytic surface, produced by isobutene polymerization inside the pores of the catalytic material. Finally, some attempts of regeneration have been studied. It has been observed how an in-situ combustion of these carbon deposits is able to restore initial conditions, although totally ineffective in stabilizing the catalytic performance, as it increases the deactivation rate of the catalyst itself in the desired MTBE cracking reaction.File | Dimensione | Formato | |
---|---|---|---|
Tesi Peirone_Peron_2.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
4.32 MB
Formato
Adobe PDF
|
4.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/145121