Proton exchange membrane fuel cells (PEMFCs) are energy conversion systems constituted of a series of distinguished components. One of the most recently introduced is the microporous layer (MPL), that coats the gas diffusion layers (GDLs) and improves dramatically the performance and the water management of the cell. Two formulations based on conventional carbon black (CB) and graphene nanoplatelets (GNPs), both containing carbon nanotubes (CNTs), were selected for the production of MPLs inks, in order to evaluate how the two different carbonaceous phases affect the electrical performances of PEMFCs and the durability of the microporous coatings. GNPs have been recently proposed in some studies as an effective alternative to CB in MPLs, which might lead to the development of a more compact layer with enhanced PEMFC performances and durability. Gas diffusion media (GDMs) were obtained by the blade coating deposition technique of the MPLs onto carbon cloth GDLs, exploiting fluorinated ethylene propylene (FEP) as fluorinated polymer for the tissue treatment and as hydrophobic phase of the MPL ink, because of its demonstrated enhancement in the water management compared to the commonly employed polymer nowadays, PTFE. The electrical output of fuel cell assembly, mounting CB- or GNPs-based pristine MPLs, was analysed by recording polarization curves under different operating conditions of relative humidity (RH) and temperature. Moreover, the best performing operative condition for the two kinds of samples was selected for repeatability tests, in order to evaluate their reliability. The durability of the GDMs was assessed by performing accelerated stress tests (ASTs) on both CB- and GNP-based samples aiming to detect the main degradation mechanism. A chemical AST was carried out by exposing GDMs to a concentrated sulphuric acid solution for 1000 h and a mechanical AST was performed by subjecting samples to elevated air flow rates in a dummy cell, again for 1000 h. Then, the polarization curves of the degraded samples were recorded, in order to evaluate the effects of the two kinds of degradation mechanisms on the electrical output of the fuel cell. In each case, the electrochemical characterization was matched with optical microscopy, static contact angle analysis, mercury intrusion porosimetry and permeability measurements, in order to relate the morphology of the MPLs of different compositions to the cell performance and to better understand the effects of the degradation mechanisms on the samples.
Le proton exchange membrane fuel cells (PEMFCs) sono sistemi di conversione dell'energia costituiti da una serie di diversi componenti. Tra quelli introdotti più recentemente si ha il microporous layer (MPL), che riveste i gas diffusion layers (GDLs) e migliora drasticamente le prestazioni e la gestione dell'acqua della cella. Due formulazioni basate sull'uso di carbon black (CB) e nanoplatelets di grafene (GNPs), entrambe contenenti nanotubi di carbonio (CNTs), sono state selezionate per la produzione di inchiostri per MPLs, così da valutare come le due differenti fasi carboniose influenzino le prestazioni elettriche delle PEMFCs e la durabilità dei rivestimenti microporosi. GNPs sono stati recentemente proposti da alcuni studi come un'efficace alternativa al CB nei MPLs, che potrebbe portare allo sviluppo di strati più compatti con più elevate prestazioni e durabilità delle PEMFCs. I gas diffusion media (GDMs) sono stati ottenuti tramite la tecnica di deposizione del blade coating di MPLs su tessuti carboniosi, utilizzati come gas diffusion layers (GDLs). È stato sfruttato l'etilen-propilene fluoronato (FEP) come polimero fluoronato per il trattamento del tessuto e come fase idrofobica nell'inchiostro del MPL, come risultato del dimostrato miglioramento nella gestione dell'acqua rispetto al polimero attualmente più impiegato, il PTFE. Il segnale elettrico prodotto dalla cella a combustibile assemblata, con MPL vergini a base di CB o GNPs, è stato analizzato attraverso la misurazione delle curve di polarizzazione in diverse condizioni operative di umidità relativa e temperatura. Inoltre, le condizioni operative che hanno garantito i migliori risultati per i due campioni sono state selezionate per test di ripetibilità, in modo tale da valutarne l'affidabilità. La durabilità dei GDMs è stata determinata per mezzo di stress test accelerati (ASTs) volti a individuare il principale meccanismo di degrado. Un AST chimico è stato realizzato tramite esposizione dei GDMs a una soluzione concentrata di acido solforico per 1000 h e un AST meccanico è stato ottenuto tramite esposizione dei GDMs a flussi elevati di aria in una finta cella, nuovamente per 1000 h. Poi sono state registrate le curve di polarizzazione dei campioni degradati, così da poter valutare gli effetti dei due meccanismi di degrado sulle prestazioni elettriche della cella. In ogni caso, alla caratterizzazione elettrochimica sono state affiancate microscopia ottica, analisi dell'angolo di contatto statico, porosimetria a intrusione di mercurio e misure di permeabilità, in modo tale da associare la morfologia dei MPLs di diverse composizioni alla prestazione della cella e chiarire gli effetti dei meccanismi di degrado sui campioni.
Analysis of the effects of different carbonaceous phases in the microporous layer composition on the reliability and durability of PEM fuel cells
RIVA, EDOARDO;MARIANI, MARCO
2017/2018
Abstract
Proton exchange membrane fuel cells (PEMFCs) are energy conversion systems constituted of a series of distinguished components. One of the most recently introduced is the microporous layer (MPL), that coats the gas diffusion layers (GDLs) and improves dramatically the performance and the water management of the cell. Two formulations based on conventional carbon black (CB) and graphene nanoplatelets (GNPs), both containing carbon nanotubes (CNTs), were selected for the production of MPLs inks, in order to evaluate how the two different carbonaceous phases affect the electrical performances of PEMFCs and the durability of the microporous coatings. GNPs have been recently proposed in some studies as an effective alternative to CB in MPLs, which might lead to the development of a more compact layer with enhanced PEMFC performances and durability. Gas diffusion media (GDMs) were obtained by the blade coating deposition technique of the MPLs onto carbon cloth GDLs, exploiting fluorinated ethylene propylene (FEP) as fluorinated polymer for the tissue treatment and as hydrophobic phase of the MPL ink, because of its demonstrated enhancement in the water management compared to the commonly employed polymer nowadays, PTFE. The electrical output of fuel cell assembly, mounting CB- or GNPs-based pristine MPLs, was analysed by recording polarization curves under different operating conditions of relative humidity (RH) and temperature. Moreover, the best performing operative condition for the two kinds of samples was selected for repeatability tests, in order to evaluate their reliability. The durability of the GDMs was assessed by performing accelerated stress tests (ASTs) on both CB- and GNP-based samples aiming to detect the main degradation mechanism. A chemical AST was carried out by exposing GDMs to a concentrated sulphuric acid solution for 1000 h and a mechanical AST was performed by subjecting samples to elevated air flow rates in a dummy cell, again for 1000 h. Then, the polarization curves of the degraded samples were recorded, in order to evaluate the effects of the two kinds of degradation mechanisms on the electrical output of the fuel cell. In each case, the electrochemical characterization was matched with optical microscopy, static contact angle analysis, mercury intrusion porosimetry and permeability measurements, in order to relate the morphology of the MPLs of different compositions to the cell performance and to better understand the effects of the degradation mechanisms on the samples.File | Dimensione | Formato | |
---|---|---|---|
2018_12_Mariani_Riva.pdf
Open Access dal 05/12/2019
Descrizione: Testo della tesi
Dimensione
17.94 MB
Formato
Adobe PDF
|
17.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/145248