Hydrogen is the most promising energy vector for storing and generating electricity in a clean way. Electrocatalytic, renewable energies-driven hydrogen generation through water splitting is an appealing CO2-free production method, but it needs to overcome challenges regarding the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). For the HER, the main problem is related to Platinum, the most employed catalyst, which has high activity but is expensive and scarce. Research is thus focused on finding an alternative, non-expensive catalyst that has still comparable activity to Platinum. Transition Metal Dichalcogenides (TMDs) have recently gained attention as non-precious catalysts for HER: they have outstanding activity and are cheap and abundant. For these materials, electrochemical performances are strongly influenced by the crystalline structure and morphology. This relationship has been exploited to nano-engineer the materials, by maximizing the exposed active sites or by creating new sites, in order to obtain efficient TMDs electrocatalysts. In view of this, the present work is focused on the study of the electrochemical behavior of self-supported, nanostructured amorphous TMD catalyst of Tungsten Selenide (a-WSex), a material already investigated in our laboratory, deposited by Pulsed Laser Deposition (PLD), which could be used as non-precious catalysts in PEM electrolysers. Electrochemical characterization of such catalysts is performed, together with Raman and XRD analyses, to evaluate the catalytic performances towards HER and the effect of electrochemical testing on morphology and composition. Compared with previous reports on Tungsten Selenide, this a-WSex catalyst exhibits a good HER performance with a low V-10mA/cm2 of ~-204 mV vs RHE, a small Tafel slope of 63 mV/decade and a very long-term stability. The results obtained, despite not being the best in the scenario of the performances of the HER catalysts, show that with a technique able to control the morphology, such as the PLD, the properties of an amorphous catalyst can be exploited to increase its catalytic performances.
L’idrogeno rappresenta un vettore energetico ideale per immagazzinare e generare energia pulita. Attualmente, la strategia più promettente per produrre idrogeno senza l’emissione di CO2 è l’elettrolisi dell’acqua alimentata da energie rinnovabili, benché restino da superare alcune criticità riguardo alle reazioni di evoluzione di idrogeno e di ossigeno. In particolare, per quanto riguarda l’evoluzione di idrogeno, il problema principale è legato al Platino, il catalizzatore più impiegato, dotato di un’eccellente attività catalitica ma costoso. I calcogenuri di metalli di transizione sono attualmente oggetto di ricerca come catalizzatori non preziosi alternativi al Platino in elettrolizzatori PEM: essi infatti, oltre ad essere facilmente reperibili ed economici, hanno mostrato buona attività catalitica. Inoltre, le loro prestazioni elettrochimiche sono fortemente influenzate dalla struttura cristallina e dalla morfologia, relazione che può essere sfruttata per nano-ingegnerizzare questi materiali massimizzando i siti attivi esposti o creando nuovi siti attivi, così da ottenere efficienti elettrocatalizzatori. A tal proposito questo lavoro di tesi propone nanostrutture amorfe di seleniuro di tungsteno (a-WSex), un materiale appartenente alla famiglia dei calcogenuri di metalli di transizione e già oggetto di investigazione nel nostro laboratorio, depositate tramite Pulsed Laser Deposition (PLD). La caratterizzazione elettrochimica di tali catalizzatori viene eseguita, unitamente alle analisi Raman e XRD, per valutare sia le prestazioni catalitiche verso la reazione di evoluzione di idrogeno sia l'effetto dei test elettrochimici sulla morfologia e la composizione. Rispetto a precedenti studi sul seleniuro di tungsteno, questo catalizzatore esibisce una buona attività catalitica con un V-10mA/cm2 di ~-204 mV vs RHE, una pendenza di Tafel di 63 mV/decade e una soddisfacente stabilità. I risultati ottenuti, pur non essendo i migliori nello scenario dei catalizzatori per evoluzione di idrogeno, dimostrano che con una tecnica in grado di controllare la morfologia, come la PLD, le proprietà di un catalizzatore amorfo possono essere sfruttate per aumentarne le prestazioni.
Study of the electrochemical behavior of amorphous nanostructures of tungsten selenide for hydrogen evolution
TIRELLI, GRETA
2017/2018
Abstract
Hydrogen is the most promising energy vector for storing and generating electricity in a clean way. Electrocatalytic, renewable energies-driven hydrogen generation through water splitting is an appealing CO2-free production method, but it needs to overcome challenges regarding the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). For the HER, the main problem is related to Platinum, the most employed catalyst, which has high activity but is expensive and scarce. Research is thus focused on finding an alternative, non-expensive catalyst that has still comparable activity to Platinum. Transition Metal Dichalcogenides (TMDs) have recently gained attention as non-precious catalysts for HER: they have outstanding activity and are cheap and abundant. For these materials, electrochemical performances are strongly influenced by the crystalline structure and morphology. This relationship has been exploited to nano-engineer the materials, by maximizing the exposed active sites or by creating new sites, in order to obtain efficient TMDs electrocatalysts. In view of this, the present work is focused on the study of the electrochemical behavior of self-supported, nanostructured amorphous TMD catalyst of Tungsten Selenide (a-WSex), a material already investigated in our laboratory, deposited by Pulsed Laser Deposition (PLD), which could be used as non-precious catalysts in PEM electrolysers. Electrochemical characterization of such catalysts is performed, together with Raman and XRD analyses, to evaluate the catalytic performances towards HER and the effect of electrochemical testing on morphology and composition. Compared with previous reports on Tungsten Selenide, this a-WSex catalyst exhibits a good HER performance with a low V-10mA/cm2 of ~-204 mV vs RHE, a small Tafel slope of 63 mV/decade and a very long-term stability. The results obtained, despite not being the best in the scenario of the performances of the HER catalysts, show that with a technique able to control the morphology, such as the PLD, the properties of an amorphous catalyst can be exploited to increase its catalytic performances.File | Dimensione | Formato | |
---|---|---|---|
2018_12_Tirelli.pdf
solo utenti autorizzati dal 30/11/2021
Descrizione: Testo della tesi
Dimensione
5.15 MB
Formato
Adobe PDF
|
5.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/145251