Despite the integration of renewable energy sources into the power grid is the first big step against the climate change, its accomplishment is hindered by several obstacles. The transition towards Distributed Energy Resources (DER) can hardly be reconciled with the traditional model onto which the electric grid has been based for decades, de facto making it obsolete. The progressive diffusion of DER, as well as high-demand consumer devices such as Electric Vehicles, calls for a control system capable of attenuating the uncertainty injected in the grid, thus improving resources’ planning at the generation stage. In the latest years, researchers has been focusing on the so-called microgrids, i.e. small-scale grids coordinated by advanced control systems maximizing the overall efficiency while satisfying the power demand. Microgrids can furthermore provide some ancillary services to the Distribution System Operator, such as active and reactive power regulation. The goal of this Thesis is to exploit these ancillary services to mitigate the grid’s uncertainty, hence attaining a power absorption from the transmission stage adequately close to the day-ahead declared profile. This can be achieved partitioning the grid into clusters, each controlled by a decentralized predictive control system which, based on as few measurements as possible, compensates the power deviations from expected profiles by requesting ancillary services to the microgrids therein included. Moreover, in addition to the traditional three-phase transmission lines, clusters are supposed to be connected by means of a Medium-Voltage Direct Current grid, which technology has been subject to an increasing interest by the main companies operating in the field of power distribution, owing to its high efficiency and to the controllability of power transfers. These DC links are indeed exploited not only to optimize the power flows and to de-saturate the AC backbone of the grid, but also to sustain - in a controlled fashion - the most hindered regions: a clusters supervisor, in fact, is designed to adjust and actuate the power flows through the MVDCs transmission. In the proposed solution, a periodic voltage adjustment is further executed to ensure the compliance of nodal voltages to the regulatory limits and to minimize the power losses. The designed control system is eventually tested, proving to attain the desired performances.
Pur essendo l’integrazione delle risorse rinnovabili nella rete elettrica il primo passo per la lotta al surriscaldamento globale, la sua effettiva attuazione è ostacolata da molteplici problematiche. La transizione verso unità di generazione distribuite sul territorio è infatti difficilmente conciliabile con lo schema che ha sorretto la rete elettrica nell’ultimo secolo e lo rende, di fatto, obsoleto. Questo trend, insieme alla progressiva diffusione di dispositivi domestici ad alto consumo come le auto elettriche, impone la necessità di introdurre un sistema di controllo che compensi le incertezze introdotte nella rete, così da consentire una miglior pianificazione dello stadio di generazione. Recentemente la ricerca si è concentrata sulle cosiddette microreti, ovvero reti elettriche in piccola scala coordinate da schemi di controllo spesso molto avanzati, che consentono di bilanciare i carichi massimizzando l’efficienza complessiva. Le microreti possono inoltre offrire all’Operatore di Distribuzione alcuni servizi ancillari, quali ad esempio la regolazione di potenza attiva e reattiva. L’obiettivo di questa Tesi è quello di sfruttare tali servizi ancillari per mitigare l’incertezza della rete, assicurando così un assorbimento di potenza dallo stadio di trasmissione prossimo a quello dichiarato il giorno antecedente. Questo proposito è stato perseguito tramite il partizionamento della rete in cluster, ciascuno dei quali controllato da un sistema di controllo predittivo che, utilizzando il minimo numero di misure, compensa localmente le variazioni di potenza attiva rispetto ai valori previsti richiedendo servizi ancillari alle microreti ivi contenute. I cluster, oltre che dai tradizionali collegamenti trifase, sono considerati collegati da una rete di trasmissione a media tensione continua (MVDC), una soluzione di recente molto investigata dalle principali aziende operanti nel settore, grazie alla sua elevata efficienza e alla controllabilità dei flussi di potenza. Questi collegamenti MVDC vengono sfruttati non solo per ottimizzare i flussi di potenza e per de-saturare lo scheletro della rete di distribuzione, ma anche per sostenere le aree della rete maggiormente in difficoltà in maniera controllata: questo è possibile grazie ad un supervisore centralizzato adibito all’attuazione dei flussi di potenza lungo la trasmissione a corrente continua. Nella soluzione proposta è altresì eseguito un periodico aggiustamento delle tensioni, in modo da garantire che rispettino i limiti regolamentari della rete, minimizzando contestualmente le perdite di potenza. Il sistema di controllo è infine validato, dando prova di soddisfare i sopraelencati obiettivi.
Modeling and multi-layer optimal control of a mixed AC-DC grid
BONASSI, FABIO
2017/2018
Abstract
Despite the integration of renewable energy sources into the power grid is the first big step against the climate change, its accomplishment is hindered by several obstacles. The transition towards Distributed Energy Resources (DER) can hardly be reconciled with the traditional model onto which the electric grid has been based for decades, de facto making it obsolete. The progressive diffusion of DER, as well as high-demand consumer devices such as Electric Vehicles, calls for a control system capable of attenuating the uncertainty injected in the grid, thus improving resources’ planning at the generation stage. In the latest years, researchers has been focusing on the so-called microgrids, i.e. small-scale grids coordinated by advanced control systems maximizing the overall efficiency while satisfying the power demand. Microgrids can furthermore provide some ancillary services to the Distribution System Operator, such as active and reactive power regulation. The goal of this Thesis is to exploit these ancillary services to mitigate the grid’s uncertainty, hence attaining a power absorption from the transmission stage adequately close to the day-ahead declared profile. This can be achieved partitioning the grid into clusters, each controlled by a decentralized predictive control system which, based on as few measurements as possible, compensates the power deviations from expected profiles by requesting ancillary services to the microgrids therein included. Moreover, in addition to the traditional three-phase transmission lines, clusters are supposed to be connected by means of a Medium-Voltage Direct Current grid, which technology has been subject to an increasing interest by the main companies operating in the field of power distribution, owing to its high efficiency and to the controllability of power transfers. These DC links are indeed exploited not only to optimize the power flows and to de-saturate the AC backbone of the grid, but also to sustain - in a controlled fashion - the most hindered regions: a clusters supervisor, in fact, is designed to adjust and actuate the power flows through the MVDCs transmission. In the proposed solution, a periodic voltage adjustment is further executed to ensure the compliance of nodal voltages to the regulatory limits and to minimize the power losses. The designed control system is eventually tested, proving to attain the desired performances.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Bonassi_2018.pdf
solo utenti autorizzati dal 03/12/2019
Descrizione: Testo della tesi
Dimensione
2.92 MB
Formato
Adobe PDF
|
2.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/145417