This master thesis investigates low-temperature combustion advanced modes in CI engines, with specific emphasis on single-fuel and dual-fuel combustion technology called Reactivity Controlled Compression Ignition (RCCI), with a view to engine efficiency improvement and emissions reduction. An extensive investigation activity has been performed to account for the effect of heated fuel direct injection to promote reactivity-controlled combustion using a single-fuel strategy. The proposed novel combustion concept is referred to as “Temperature Controlled Reactivity Compression Ignition” (TCRCI). The CFD modeling based on chemical kinetics’ tabulation and complex flow solving has been adopted for a proper prediction of ignition timing and control, flame structure evolution and combustion physical and chemical properties under high-temperature injection, to reduce the computational effort. Initially, numerical analyses have been carried out focusing on the auto-ignition process, heat release and flame structure under different configurations and ambient conditions in a constant volume domain as “proof of concept”. Conventional Diesel and advanced PCCI, HCCI and TCRCI concepts have been compared by using Lib-ICE, based on the OpenFOAM technology. Afterward, simulations have been performed on a Light-Duty engine, to better understand evolving pressure, heat release rate, combustion parameters inside the cylinder and overall efficiencies. Then, a new tabulation code to be used for dual-fuel RCCI combustion has been developed and validated under different simulated conditions on the basis of the well-grounded virtual species' approach. New dual-fuel library function coupled with new RCCI CFD solvers for a constant-volume reactor and cycle-to-cycle engine simulations have been implemented to correctly handle the new tables format. The obtained TCRCI and RCCI results prove the consistency of the new implemented dual-fuel applications and reveal how TCRCI concept is a promising method to achieve RCCI-comparable high efficiency and clean combustion over a wide range of engine loads.
Questa tesi approfondisce le modalità avanzate di combustione a bassa temperatura nei motori CI, con peculiare attenzione alla nuova tecnologia di combustione a singola e doppia alimentazione denominata Reactivity Controlled Compression Ignition (RCCI), nel tentativo di migliorare l'efficienza dei motori e ridurre le emissioni. Un'ampia attività investigativa è stata condotta per tenere conto dell'effetto dell’iniezione diretta di combustibile riscaldato per promuovere una combustione controllata dalla reattività chimica a singola alimentazione. Il nuovo concetto di combustione proposto è denominato Temperature Controlled Reactivity Compression Ignition (TCRCI). Per una corretta previsione dei tempi e del controllo d’accensione, dell’evoluzione della struttura di fiamma e delle proprietà chimiche e fisiche di combustione, è stata adottata la modellazione CFD basata sulla tabulazione della cinetica chimica, per ridurre il tempo computazionale. Gli studi sono stati inizialmente eseguiti in un ambiente a volume costante come "proof of concept" per comprendere a fondo il processo di accensione, il rilascio di calore e lo sviluppo della fiamma sotto diverse configurazioni e condizioni ambientali. Le modalità Diesel, PCCI, HCCI e TCRCI sono state confrontate usufruendo della libreria Lib-ICE, basata sulla tecnologia OpenFOAM: successivamente, le analisi sono state effettuate su un motore Light-Duty, per comprendere meglio l’evoluzione della pressione, le velocità di rilascio del calore, i parametri di combustione e le efficienze complessive all'interno del cilindro. Quindi, è stato sviluppato e convalidato un nuovo codice di tabulazione destinato alla combustione RCCI a doppia alimentazione, sulla base del comprovato metodo di calcolo delle specie virtuali, per poter simulare correttamente la modalità avanzata di combustione RCCI. Pertanto, sono stati implementati una nuova libreria dual-fuel, abbinata a nuovi solutori CFD destinati a simulazioni RCCI a volume costante e non, per gestire correttamente il nuovo formato delle tabelle. I risultati TCRCI e RCCI ottenuti dimostrano la validità delle nuove applicazioni dual-fuel e rivelano come la combustione TCRCI sia un metodo promettente per ottenere elevate efficienze e combustioni pulite su un'ampia gamma di carichi del motore.
Evaluation of the potentials of temperature controlled reactivity compression ignition combustion for efficiency increase in CI engines
GAZZOLA, FILIPPO
2017/2018
Abstract
This master thesis investigates low-temperature combustion advanced modes in CI engines, with specific emphasis on single-fuel and dual-fuel combustion technology called Reactivity Controlled Compression Ignition (RCCI), with a view to engine efficiency improvement and emissions reduction. An extensive investigation activity has been performed to account for the effect of heated fuel direct injection to promote reactivity-controlled combustion using a single-fuel strategy. The proposed novel combustion concept is referred to as “Temperature Controlled Reactivity Compression Ignition” (TCRCI). The CFD modeling based on chemical kinetics’ tabulation and complex flow solving has been adopted for a proper prediction of ignition timing and control, flame structure evolution and combustion physical and chemical properties under high-temperature injection, to reduce the computational effort. Initially, numerical analyses have been carried out focusing on the auto-ignition process, heat release and flame structure under different configurations and ambient conditions in a constant volume domain as “proof of concept”. Conventional Diesel and advanced PCCI, HCCI and TCRCI concepts have been compared by using Lib-ICE, based on the OpenFOAM technology. Afterward, simulations have been performed on a Light-Duty engine, to better understand evolving pressure, heat release rate, combustion parameters inside the cylinder and overall efficiencies. Then, a new tabulation code to be used for dual-fuel RCCI combustion has been developed and validated under different simulated conditions on the basis of the well-grounded virtual species' approach. New dual-fuel library function coupled with new RCCI CFD solvers for a constant-volume reactor and cycle-to-cycle engine simulations have been implemented to correctly handle the new tables format. The obtained TCRCI and RCCI results prove the consistency of the new implemented dual-fuel applications and reveal how TCRCI concept is a promising method to achieve RCCI-comparable high efficiency and clean combustion over a wide range of engine loads.File | Dimensione | Formato | |
---|---|---|---|
2018_12_Gazzola.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della Tesi
Dimensione
4.1 MB
Formato
Adobe PDF
|
4.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/145425