Inorganic scintillators are used in many fields including nuclear technology and physics, thanks to their scintillation properties after the interaction with a radiation field. In the last decades there was an incredible development in the realization of crystalline scintillators and only recently they have been realized in ceramic form with excellent structural and physical properties, but they are still topics of study. Scintillators are coupled with photomultipliers to convert the light emitted into an electric signal that, through an electronic chain of acquisition, generates a voltage pulse that can be measured. Some of the last innovative photomultipliers are based on silicon, named Silicon Photomultipliers (SiPMs), with small dimensions, structural hardness, with low working voltages and insensible to magnetic fields. Using these instruments with infinite possibilities of development in future, we decided to approach the problem of particles discrimination with an innovative method, the Spectrum Discrimination (SD). Instead of using the shape of the pulses to discriminate them as in the Pulse Shape Discrimination (PSD), we exploited the emission spectra of the scintillators. With a phoswich configuration, so coupling different scintillators, we discriminated the signals emitted by different materials that interact with different radiations, with the use of optical filters. The crucial point of SD is that the emission spectra have to be well separated. Our purpose is to demonstrate the feasibility of the proof of concept and, as an example of possible discrimination, we tested a neutron-gamma discrimination using GGAG:Ce, which contains gadolinium to be sensible to the thermal neutrons, with an emission spectrum about 540 nm, and a ceramic YAG:Pr sample and a LuAG:Pr crystal to trigger the VETO signal for the anti-coincidence acquisition of the pulses, with an emission spectra about 310 nm. Despite the experimental set up is just a prototype, with results that can be improved by a better mechanical and structural configuration and better materials, we demonstrated the feasibility to discriminate signals, correlating which scintillator has interacted, using a simple electronic circuit and a multichannel to measure the counts of GGAG:Ce with and without VETO, estimating the percentage of rejection of the gamma and neutron counts (false negatives and false positives).
Gli scintillatori inorganici vengono da sempre utilizzati in moltissimi campi che riguardano la tecnologia e la fisica nucleare grazie alle loro proprietà di scintillazione in risposta all’interazione con un campo di radiazioni. Negli ultimi decenni c’è stato un incredibile sviluppo nella realizzazione di scintillatori cristallini mentre solo recentemente sono state realizzate anche ceramiche con proprietà strutturali e di scintillazione ottime ma ancora oggetto di studio e sviluppo. Gli scintillatori devono essere accoppiati a dei fotomoltiplicatori per convertire la luce emessa in un segnale elettrico che da luogo, grazie ad una catena di acquisizione elettronica, ad un impulso in tensione misurabile. Alcuni dei più innovativi fotomoltiplicatori sono quelli al silicio, denominati Silicon Photomultiplier (SiPM), di dimensioni ridotte, robusti, che lavorano a basse tensioni e insensibili ai campi magnetici. Utilizzando questi strumenti abbiamo deciso di affrontare il problema della discriminazione di particelle con un approccio innovativo. Invece di utilizzare la forma degli impulsi per discriminare come nella PSD (Pulse Shape Discrimination), abbiamo sfruttato lo spettro di emissione degli scintillatori. Con una configurazione di tipo phoswich, cioè accoppiando diversi scintillatori tra loro, abbiamo discriminato con dei filtri ottici gli spettri emessi dai diversi materiali che interagiscono con i diversi tipi di radiazione, realizzando una Spectrum Discrimination (SD). Il punto fondamentale di questo approccio è che gli spettri di emissione dei diversi scintillatori non siano sovrapposti. Come esempio per verificare questo principio abbiamo testato una discriminazione neutroni-gamma servendoci di un GGAG:Ce, contenente gadolinio e quindi sensibile ai neutroni termici, con un’emissione a circa 540 nm, e di uno YAG:Pr ceramico e di un LuAG:Pr cristallino, per il segnale di VETO per l’anticoincidenza, con un’emissione a 310 nm. Nonostante il set up imbastito sia solo un prototipo con risultati migliorabili in futuro sia a livello strutturale che di materiali, abbiamo dimostrato la possibilità di discriminare i segnali capendo quale scintillatore abbia interagito, utilizzando un semplice circuito elettronico di acquisizione del segnale e un multicanale per calcolare i conteggi dei neutroni del GGAG:Ce con e senza VETO, cioè calcolando la percentuale di rigetto nel caso di neutroni e di fotoni gamma (falsi positivi e negativi).
Development of a prototype of phoswich detector for particle discrimination based on the emission spectra of scintillators
DI BENEDETTO, MARCO
2017/2018
Abstract
Inorganic scintillators are used in many fields including nuclear technology and physics, thanks to their scintillation properties after the interaction with a radiation field. In the last decades there was an incredible development in the realization of crystalline scintillators and only recently they have been realized in ceramic form with excellent structural and physical properties, but they are still topics of study. Scintillators are coupled with photomultipliers to convert the light emitted into an electric signal that, through an electronic chain of acquisition, generates a voltage pulse that can be measured. Some of the last innovative photomultipliers are based on silicon, named Silicon Photomultipliers (SiPMs), with small dimensions, structural hardness, with low working voltages and insensible to magnetic fields. Using these instruments with infinite possibilities of development in future, we decided to approach the problem of particles discrimination with an innovative method, the Spectrum Discrimination (SD). Instead of using the shape of the pulses to discriminate them as in the Pulse Shape Discrimination (PSD), we exploited the emission spectra of the scintillators. With a phoswich configuration, so coupling different scintillators, we discriminated the signals emitted by different materials that interact with different radiations, with the use of optical filters. The crucial point of SD is that the emission spectra have to be well separated. Our purpose is to demonstrate the feasibility of the proof of concept and, as an example of possible discrimination, we tested a neutron-gamma discrimination using GGAG:Ce, which contains gadolinium to be sensible to the thermal neutrons, with an emission spectrum about 540 nm, and a ceramic YAG:Pr sample and a LuAG:Pr crystal to trigger the VETO signal for the anti-coincidence acquisition of the pulses, with an emission spectra about 310 nm. Despite the experimental set up is just a prototype, with results that can be improved by a better mechanical and structural configuration and better materials, we demonstrated the feasibility to discriminate signals, correlating which scintillator has interacted, using a simple electronic circuit and a multichannel to measure the counts of GGAG:Ce with and without VETO, estimating the percentage of rejection of the gamma and neutron counts (false negatives and false positives).File | Dimensione | Formato | |
---|---|---|---|
Marco Di Benedetto Tesi Magistrale.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
5.02 MB
Formato
Adobe PDF
|
5.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/145465