In order to reduce greenhouse gas emissions and to assure a sustainable future for our world, it is clear that renewable energy sources are playing a key role. Marine hydrokinetic energy is abundant, clean, renewable, and worldwide available. The vast majority of sea/river currents is slower than 1-1.5 m/s while marine turbines require 2-3 m/s to be financially viable. Can we harness such a treasure in an environmentally compatible way, without using dams/turbines, and convert it to affordable electricity? The object of this thesis, the VIVACE (Vortex Induced Vibrations for Aquatic-Clean Energy) Converter, is a device that converts ocean/sea/river current hydrokinetic energy to electricity and satisfies all the requirements. Basically, a VIVACE module consists of an array of rigid circular cylinders mounted on elastic springs and connected to a power take-off system via a transmission mechanism, generating electricity based on the idea of enhancing rather than suppressing Flow Induced Oscillations (FIO). VIV (vortex induced vibrations) and galloping are two different FIO phenomena. For equivalent velocities, VIVACE achieves power-to-volume ratio about 40,000-60,000 times that of wind farms. It can extract energy even from currents as slow as 0.3 m/s, it is cost-competitive, unobtrusive to people and marine life, is modular, scalable, reconfigurable, simple to build, maintain, deploy and retrieve. Indeed alternating-lift overcomes these challenges; VIVACE hydrokinetic energy converter is a three-dimensional energy absorber that efficiently works in slow velocity river/sea/ocean currents, starting from 0.3 m/s, a range of velocities presently inaccessible to watermills and turbines. This breakthrough technology utilizes flow-induced motions (FIM), which are potentially destructive phenomena for structures, enhances them and converts hydrokinetic energy to electricity. It was invented in the Marine Renewable Energy Lab (MRELab) and patented through the University of Michigan. MRELab has been studying the effect of passive turbulence control (PTC) to enhance FIMs and to expand their synchronization range for energy harnessing. Furthermore multiple cylinders in proximity can synergistically work and harness more energy than the same number of a single cylinder in isolation. Estimation based on experiments, shows that a 4 PTC-cylinder Converter can achieve 88.6% peak efficiency of the Betz limit, at flow speed slower than 1.0 m/s, and power-to-volume density of 875 W/m3 at 1.45 m/s. Thus, VIVACE can efficiently harness energy from rivers and seas current as slow as 0.5–1.5 m/s, with no upper limit in flow velocity. My research, performed in the MRElab at the University of Michigan, is focused on the design of VIVACE in a marine environment with particular attention to offshore, shut-down old platforms, playing the dual role of reassessing such platforms and producing ocean renewable energy. Starting from last deployment with Oscylator-4 design, a four cylinder 3 meters long structure placed in St. Clair river, Detroit, in 2016, we wanted to maintain qualities of this design but also improve it, avoiding issues that occurred and adapting VIVACE for harsh marine environments, considering any changes in direction of currents that may happen, and complying with scalability, modularity, quick-deployment/retrieval, easy maintenance and durability of the design. Sea-VIVACE is the result of these design improvements: takes into account either qualities and requirements that VIVACE needs and is a scalable design, therefore could be implemented in seas with a water depth until 70/80 meters, but also in rivers with lower depths. A particular regard to integrations for reassessment of offshore rigs is analyzed; platform reassessment could give a new life to the osshore structure, avoiding dismantling costs and preserving the marine ecosystem that is living within them. The direct plug and inclusion of VIVACE modules along rig substructures or the utilization of a rig as a control center and “artificial island” such as laboratory park inside a Sea-VIVACE water energy park, can save capital costs and play a recycling role for shut-down platforms. Another interesting and smart option that Sea-VIVACE design can provide, is the integration with offshore wind turbines, with a single installation able to harness both energy from marine currents and energy from wind.
Al fine di ridurre le emissioni di gas ad effetto serra e assicurare sostenibile al nostro pianeta, è chiaro che le fonti di energia rinnovabile giocano un ruolo molto importante. L’energia marina idrocinetica è abbondante, pulita, rinnovabile e disponibile in tutto il mondo. La grande maggioranza di correnti marine/fluviali è più lenta di 1-1.5m/s mentre le turbine marine richiedono 2-3m/s per essere economicamente realizzabili. Possiamo sfruttare un tale tesoro in maniera ecologicamente compatibile, senza usare dighe/turbine e convertirlo in elettricità accessibile? L’oggetto della mia tesi, il convertitore VIVACE (Vortex Induced Vibrations for Aquatic-Clean Energy) è un dispositivo che converte energia idrocinetica di correnti oceaniche/marine/fluviali in elettricità e soddisfa tutti i requisiti. In pratica, un modulo di VIVACE consiste in una serie di cilindri rigidi e circolari montati su molle elastiche e connessi ad un sistema di presa di potenza tramite un meccanismo di trasmissione, generando elettricità basandosi sull’idea di aumentare invece che sopprimere le oscillazioni indotte dal flusso (FIO). VIV (vortex induced vibration) e galloping sono due differenti fenomeni FIO. Per velocità equivalenti, VIVACE raggiunge un rapporto di potenza per volume corrispondente a 40.000-60.000 volte quello di un parco eolico. Può estrarre energia anche da correnti lente 0.3 m/s, è competitivo in termini di costo, discreto su persone e sulla vita marina, è modulare, scalabile, riconfigurabile, semplice da costruire, preservare, utilizzare e recuperare. Infatti il moto alternato di lift supera queste sfide; il convertitore idrocinetico di energia VIVACE è un assorbitore tridimensionale di energia che lavora efficientemente in lente velocità correnti oceaniche/marine/fluviali, a partire da da 0.3 m/s, un range di velocità attualmente inaccessibile a mulini ad acqua e turbine. Questa tecnologia innovativa utilizza moti indotti dal flusso (FIM), che sono fenomeni potenzialmente distruttivi per strutture, aumentandoli e convertendo energia idrocinetica in elettricità. E’ stato inventato nel Marine Renewable Energy Lab (MRELab) e patentato attraverso l’University of Michigan. MRElab ha studiato l’effetto di un controllo passivo di turbolenza (PTC) per aumentare le FIMs ed espandere il loro range di sincronizzazione per sfruttare energia. Inoltre cilindri multipli vicini tra loro possono lavorare sinergisticamente e sfruttare più energia rispetto allo stesso numero di cilindri singoli isolati. Una stima basata su esperimenti, mostra che un convertitore con 4 cylindri costruiti con PTC può raggiungere una massima efficienza dell’ 88.6% rispetto al limite di Betz, con velocità di flusso più lente di 1.0 m/s, e una densità di potenza per volume di 875 W/m3 a 1.45m/s. Perciò VIVACE può sfruttare energia in maniera efficiente da lente correnti di fiumi e mari come 0.5–1.5 m/s, senza nessun limite superiore della velocità di flusso. La mia ricerca, eseguita presso l’ MRElab all’University of Michigan, è stata incentrata sulla progettazione di VIVACE in un ambiente marino con particolare attenzione a vecchie piattaforme offshore non più in operazione, giocando il doppio ruolo di rivalutazione di queste piattaforme e di produzione di energia marina rinnovabile. A partire dall’ultimo impiego con il design di Oscylator-4, una struttura con quattro cilindri lunghi 3 metri, collocato nel fiume St. Clair, a Detroit, nel 2016, volevamo mantenere le qualità di questo design ma anche migliorarle, evitando problemi che sono successi e adattando VIVACE al rigido ambiente marino, considerando eventuali cambiamenti nella direzione delle correnti che possono succedere, e soddisfare con scalabilità, modularità, un veloce impiego/recupero, una facile manutenzione e durata del design. Sea-VIVACE è il risultato di questi miglioramenti nel design: prende in considerazione sia le qualità che i requisiti di cui VIVACE ha bisogno ed è un progetto scalabile, perciò potrebbe essere implementato in mari con una profondità del fondale fino a 70/80 metri, ma anche in fiumi con minori profondità. Un particolare riguardo ad integrazioni per la rivalutazione di piattaforme offshore è analizzato; la rivalutazione di piattaforme potrebbe dare nuova vita a strutture offshore, evitando costi di smantellamento e preservando l’ecosistema marino che sta vivendo nelle piattaforme stesse. Il diretto collegamento ed inserimento di moduli di VIVACE lungo le fondamenta delle piattaforme o l’utilizzo di una piattaforma come centro di controllo e “isola artificiale” come un parco scientifico dentro un parco acquatico di energia con Sea-VIVACE, può far risparmiare costi di capitale e giocare un ruolo di riciclaggio per piattaforme inattive. Un’altra interessante e intelligente opzione che il design di Sea-VIVACE può fornire, è l’integrazione con le turbine eoliche offshore, con un singolo impianto capace di sfruttare sia l’energia proveniente da correnti marine che l’energia dal vento.
Design of Sea-Vivace, a marine application of VIVACE hydrokinetic energy converter
LONTANI, NICOLO'
2017/2018
Abstract
In order to reduce greenhouse gas emissions and to assure a sustainable future for our world, it is clear that renewable energy sources are playing a key role. Marine hydrokinetic energy is abundant, clean, renewable, and worldwide available. The vast majority of sea/river currents is slower than 1-1.5 m/s while marine turbines require 2-3 m/s to be financially viable. Can we harness such a treasure in an environmentally compatible way, without using dams/turbines, and convert it to affordable electricity? The object of this thesis, the VIVACE (Vortex Induced Vibrations for Aquatic-Clean Energy) Converter, is a device that converts ocean/sea/river current hydrokinetic energy to electricity and satisfies all the requirements. Basically, a VIVACE module consists of an array of rigid circular cylinders mounted on elastic springs and connected to a power take-off system via a transmission mechanism, generating electricity based on the idea of enhancing rather than suppressing Flow Induced Oscillations (FIO). VIV (vortex induced vibrations) and galloping are two different FIO phenomena. For equivalent velocities, VIVACE achieves power-to-volume ratio about 40,000-60,000 times that of wind farms. It can extract energy even from currents as slow as 0.3 m/s, it is cost-competitive, unobtrusive to people and marine life, is modular, scalable, reconfigurable, simple to build, maintain, deploy and retrieve. Indeed alternating-lift overcomes these challenges; VIVACE hydrokinetic energy converter is a three-dimensional energy absorber that efficiently works in slow velocity river/sea/ocean currents, starting from 0.3 m/s, a range of velocities presently inaccessible to watermills and turbines. This breakthrough technology utilizes flow-induced motions (FIM), which are potentially destructive phenomena for structures, enhances them and converts hydrokinetic energy to electricity. It was invented in the Marine Renewable Energy Lab (MRELab) and patented through the University of Michigan. MRELab has been studying the effect of passive turbulence control (PTC) to enhance FIMs and to expand their synchronization range for energy harnessing. Furthermore multiple cylinders in proximity can synergistically work and harness more energy than the same number of a single cylinder in isolation. Estimation based on experiments, shows that a 4 PTC-cylinder Converter can achieve 88.6% peak efficiency of the Betz limit, at flow speed slower than 1.0 m/s, and power-to-volume density of 875 W/m3 at 1.45 m/s. Thus, VIVACE can efficiently harness energy from rivers and seas current as slow as 0.5–1.5 m/s, with no upper limit in flow velocity. My research, performed in the MRElab at the University of Michigan, is focused on the design of VIVACE in a marine environment with particular attention to offshore, shut-down old platforms, playing the dual role of reassessing such platforms and producing ocean renewable energy. Starting from last deployment with Oscylator-4 design, a four cylinder 3 meters long structure placed in St. Clair river, Detroit, in 2016, we wanted to maintain qualities of this design but also improve it, avoiding issues that occurred and adapting VIVACE for harsh marine environments, considering any changes in direction of currents that may happen, and complying with scalability, modularity, quick-deployment/retrieval, easy maintenance and durability of the design. Sea-VIVACE is the result of these design improvements: takes into account either qualities and requirements that VIVACE needs and is a scalable design, therefore could be implemented in seas with a water depth until 70/80 meters, but also in rivers with lower depths. A particular regard to integrations for reassessment of offshore rigs is analyzed; platform reassessment could give a new life to the osshore structure, avoiding dismantling costs and preserving the marine ecosystem that is living within them. The direct plug and inclusion of VIVACE modules along rig substructures or the utilization of a rig as a control center and “artificial island” such as laboratory park inside a Sea-VIVACE water energy park, can save capital costs and play a recycling role for shut-down platforms. Another interesting and smart option that Sea-VIVACE design can provide, is the integration with offshore wind turbines, with a single installation able to harness both energy from marine currents and energy from wind.File | Dimensione | Formato | |
---|---|---|---|
Lontani-Nicolò-thesis.pdf
accessibile in internet per tutti
Descrizione: testo della tesi
Dimensione
51.8 MB
Formato
Adobe PDF
|
51.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/145605