Nitinol is a very interesting material for special applications in different fields, such as biomedical and aerospace, as it can offer functional properties: shape memory effect and super-elasticity. The concept of integrating these unique properties in 3D complex parts looks to be very promising and attractive for advanced components. This combination between functional metals and possibility of manufacturing customized devices is allowed by Additive Manufacturing techniques. Among AM, laser wire micro-deposition is a promising method to traditional subtractive manufacturing processes for fabricating near net shape parts with high productivity and relative complexity degree. Therefore, in the present work of thesis the laser micro-deposition process on thin Nitinol wires was investigated and the microstructural and functional performances of built laminas were studied. The overall objective is to identify the current challenges for wire-feed laser AM of Nitinol as well as point out the future research direction. At first, the influence of the investigated process conditions, such as energy input, pulse duration and wire-feed rate, was investigated on the geometrical features of the single layer. Then, the selected process condition was used for the realization of thin walls with a multilayer strategy. The walls, realized with two batches of Nitinol wires, were characterized through optical microscopy, scanning electron microscopy, differential scanning calorimetry and micro-hardness.
ll Nitinol è un materiale molto interessante per diverse applicazioni, come quelle per il settore del biomedicale ed aerospaziale, in quanto può offrire le seguenti proprietà funzionali: effetto memoria di forma e super-elasticità. Il concetto di integrazione di queste proprietà uniche in parti complesse 3D sembra essere molto promettente ed attraente per la fabbricazione di componenti avanzati. Questa combinazione di caratteristiche di forma e funzionali integrate in dispositivi è consentita dalle tecniche di produzione additiva. Tra le Tecnologie additive, la micro-deposizione del filo del laser è un metodo promettente, capace di offrire alta produttività ed un relativo grado di complessità. Pertanto, nel presente lavoro di tesi è stato studiato il processo di micro-deposizione laser effettuato utilizzando sottili fili di Nitinol e sono state studiate le prestazioni microstrutturali delle lamine costruite. Inizialmente è stato studiato il processo di deposizione con filo in funzione dell’energia dell’impulso, della velocità di adduzione del filo e della durata dell’impulso, per la realizzazione di single layer. Successivamente, sono state definite le condizioni per la realizzazione di strutture multi layer. Tali lamine sono poi state caratterizzazione dal punto di vista della microstruttura e della trasformazione martensitica, tipica dei materiali a memoria di forma. Le caratterizzazioni eseguite hanno previsto analisi mediante microscopia ottica, elettronica a scansione, misure a raggi X e calorimetria differenziale a scansione e profili di micro durezza.
Wire feed laser additive manufacturing of super-elastic NiTi alloy
ABDELAAL, SHERIF ZAHER ABBAS
2017/2018
Abstract
Nitinol is a very interesting material for special applications in different fields, such as biomedical and aerospace, as it can offer functional properties: shape memory effect and super-elasticity. The concept of integrating these unique properties in 3D complex parts looks to be very promising and attractive for advanced components. This combination between functional metals and possibility of manufacturing customized devices is allowed by Additive Manufacturing techniques. Among AM, laser wire micro-deposition is a promising method to traditional subtractive manufacturing processes for fabricating near net shape parts with high productivity and relative complexity degree. Therefore, in the present work of thesis the laser micro-deposition process on thin Nitinol wires was investigated and the microstructural and functional performances of built laminas were studied. The overall objective is to identify the current challenges for wire-feed laser AM of Nitinol as well as point out the future research direction. At first, the influence of the investigated process conditions, such as energy input, pulse duration and wire-feed rate, was investigated on the geometrical features of the single layer. Then, the selected process condition was used for the realization of thin walls with a multilayer strategy. The walls, realized with two batches of Nitinol wires, were characterized through optical microscopy, scanning electron microscopy, differential scanning calorimetry and micro-hardness.File | Dimensione | Formato | |
---|---|---|---|
2019_04_ABDELAAL.pdf
non accessibile
Descrizione: 2019_04_ABDELAAL
Dimensione
4.6 MB
Formato
Adobe PDF
|
4.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/145662