The present work was carried out at SEI Laser S.p.A. in Curno, Bergamo, Italy, from September 2018 to March 2019. SEI Laser designs and manufactures flat-bed plotter systems with interpolated coordinate axes and Galvanometer scan head systems, both equipped with CO2 and solid state laser sources, for cutting and marking a wide range of different materials. Extremely fast and precise this last typology of laser machines draws its strength from the peculiar rapidity and accuracy of Galvanometer-based scanners (GSs), which role is to steer the laser beam onto the worktable by rotating in perpendicular directions two custom-built mirrors. Before being deflected, the laser light coming from the source is collimated and expanded by a beam expander. This preliminary stage is fundamental for decreasing the focused spot size on the workpiece and therefore in improving both the precision and the speed of the working process. Interest of the company was to reach smaller spot sizes by expanding the laser beam even more than their current products do. One of the main problem arising from the expansion process, besides the new optics design, was the evaluation of the consequences on the performance deriving from the unavoidable increment of the Galvanometer scanners' mirrors' dimension. The engineering design process and the production of such a specific mirror costs to the company tens of thousands of euros. The purpose of my work was to provide a reliable model which could simulate the behaviour of a given Galvanometer actuator and understand the general operation behind the control method of the servo driver board. In addition to the increment of the overall know-how of the company, my role was to give a tool which could offer some insight on the feasibility of the project without any supplementary cost.
Il lavoro esposto nella seguente tesi è stato svolto presso l’azienda SEI Laser S.p.A. con sede a Curno,Bergamo, da Settembre 2018 a Marzo 2019. SEI Laser progetta e produce sistemi laser plotter e sistemi di scansione galvanometrica, entrambi dotati di sorgenti laser a stato solido o a CO2, per il taglio e la marcatura di una vasta gamma di materiali. Estremamente veloce e precisa, questa ultima tipologia di macchine laser trae la sua forza dalla peculiare rapidità e accuratezza dei motori galvanometrici, il cui ruolo è quello di guidare il fascio laser sul piano di lavoro attraverso la rotazione di due specchi. Prima di essere deviata, la luce laser proveniente dalla sorgente viene collimata ed espansa da un sistema ottico. Questa fase preliminare è fondamentale per diminuire la dimensione dello spot focalizzato sul piano di lavoro e quindi migliorare sia la precisione che la velocità dell’intero processo. L’interesse dell’azienda è quello di riuscire a ottenere dimensioni di spot sempre più piccole andando ad espandere maggiormente il fascio laser rispetto ai suoi prodotti attuali. Uno dei principali problemi di questo processo di espansione, è valutare le conseguenze che derivano dall’inevitabile aumento della dimensione degli specchi montati sugli scanner galvanometrici. La progettazione e la produzione di tali specchi costa alla società decine di migliaia di euro. Lo scopo del mio lavoro era quello di comprendere il principio di funzionamento della scheda di controllo e fornire un modello affidabile che potesse simulare il comportamento di un determinato attuatore Galvanometrico. Il mio ruolo, oltre ad aumentare la conoscenza complessiva dell’azienda, era quindi di fornire uno strumento che potesse offrire una previsione sulla fattibilità del progetto senza andare in contro ad alcun costo supplementare.
Characterization of a three-axis galvanometer scan head for laser marking applications : modelization and design of a control system for the mirror positioning
BONACORSI, DAVIDE
2018/2019
Abstract
The present work was carried out at SEI Laser S.p.A. in Curno, Bergamo, Italy, from September 2018 to March 2019. SEI Laser designs and manufactures flat-bed plotter systems with interpolated coordinate axes and Galvanometer scan head systems, both equipped with CO2 and solid state laser sources, for cutting and marking a wide range of different materials. Extremely fast and precise this last typology of laser machines draws its strength from the peculiar rapidity and accuracy of Galvanometer-based scanners (GSs), which role is to steer the laser beam onto the worktable by rotating in perpendicular directions two custom-built mirrors. Before being deflected, the laser light coming from the source is collimated and expanded by a beam expander. This preliminary stage is fundamental for decreasing the focused spot size on the workpiece and therefore in improving both the precision and the speed of the working process. Interest of the company was to reach smaller spot sizes by expanding the laser beam even more than their current products do. One of the main problem arising from the expansion process, besides the new optics design, was the evaluation of the consequences on the performance deriving from the unavoidable increment of the Galvanometer scanners' mirrors' dimension. The engineering design process and the production of such a specific mirror costs to the company tens of thousands of euros. The purpose of my work was to provide a reliable model which could simulate the behaviour of a given Galvanometer actuator and understand the general operation behind the control method of the servo driver board. In addition to the increment of the overall know-how of the company, my role was to give a tool which could offer some insight on the feasibility of the project without any supplementary cost.File | Dimensione | Formato | |
---|---|---|---|
Tesi Bonacorsi Davide.pdf
non accessibile
Descrizione: Master thesis
Dimensione
4.08 MB
Formato
Adobe PDF
|
4.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/145728