Ultrafast optics is currently one of the dominating areas of the scientific world for research and development. The study of sub-picosecond phenomena, which result to be too fast for electronic monitoring, has been the driving motivation for the generation of laser pulses in the femtosecond regime. Furthermore, the growing interest in ultrafast lasers is due to some fundamental applications like High Harmonic Genreration (HHG) or the production of attosecond pulses, which have been introduced only in the last 20 years. Such ultrashort light pulses, generated across a wide spectrum of frequencies with arbitrary electric field waveform, means that the force the light exerts on electrons in atoms and molecules can be controlled for the first time. In order to achieve these kind of performances high-energy, ultrashort, ultrabroadband laser pulses are required. A well-established technique for pulse shortening is the spectral broadening of laser pulses by self-phase modulation (SPM) in a single-mode optical fiber filled with gas followed by phase compensation in suitable phase-dispersive elements. This kind of approach has been developed since 1987 and it is particularly suitable for high-energies regime, where the damage of the optics constitutes the main limitation. Another very interesting technique to broaden a laser pulse by SPM is through the passage in a bulk material. However, distructive nonlinear processes have limited the useful input power to few megawatts and consequently not allowed the application of this process in the high energy-regime. Moreover, Kerr lens and breaking of the beam profile constitute a limit for the generation of reliable high-power and high-energy pulses. One more method for the production of broadband pulses is the so called stimulated Raman scattering (SRS), which just recently has been used as a technique for post-compression, with strong limitations on the achievable efficiency. For the first time the long HCF itself will be used to exploit SRS for the post-compression of the laser pulse. The goal of this thesis is the generation of ultrashort high-energy ultrabroadband pulses, achieved at first by broadening the input laser pulse through the propagation in Hollow Core Fiber and bulk materials. In a second moment, the innovative post-compression technique based on stimulated Raman scattering will be studied. The systems shall be carachterized by the analysis of the pulse properties in the time and frequency domains. A comparison between the achievable performances in the different setups shall be performed, as the study of an hybrid set-up consisting of a cascade of the HCF and Plates systems. The functionality of the developed apparatus shall be demonstrated through proof-of-principle measurements of the output pulse properties.
Ultrafast optics rappresenta attualmente una delle aree dominanti del mondo scientifico per quanto riguarda ricerca e sviluppo. Lo studio di fenomeni della durata inforiore al picosecondo, che risultano essere troppo veloci per un monitoraggio elettronico, è stata la motivazione che ha portato alla generazione di impulsi laser della durata di pochi femtosecondi. Inoltre, l’interesse crescente nei laser ultraveloci è dovuto ad alcune applicazioni fondamentali come l’High Harmonic Generation (HHG) o la generazione di impulsi ad attosecondi, che sono stati introdotti solo negli ultimi 20 anni. Tali impulsi laser ultrabrevi, generati su un ampio spettro di frequenze con arbitrarie forme d’onda del campo elettrico, indicano che la forza esercitata dalla luce su elettroni in atomi e molecole può essere controllata per la prima volta. Per ottenere tali prestazioni sono richiesti impulsi laser con alta energia, ultrabrevi e spettri molto estesi. Una tecnica molto diffusa per ridurre la durata di un impulso laser è legata allo “spectral broadening” per self-phase modulation (SPM) in una fibra ottica a singolo modo in cui sia stato precedentemente inserito uno specifico gas, seguito da una compensazione della fase tramite l’uso di elementi dispersivi. Questo tipo di approccio è stato progressivamente sviluppato a partire dal 1987 e risulta particolarmente adatto per applicazioni ad alta energia, quando il principale limite è costituito dal danneggiamento delle ottiche. Un’altra tecnica molto interessante per estendere le componenti spettrali di un impulso laser per SPM è costituita dal passaggio del laser in un solido. Tuttavia, processi nonlineari distruttivi hanno limitato le potenze che possono essere usate in ingresso a pochi megawatt e quindi non hanno permesso l’uso di tali sistemi in applicazioni ad alta energia. Inoltre, la generazione di impulsi affidabili ad alta potenza ed energia risulta limitata dall’effetto Kerr lens e dalla rottura del profilo spaziale dell’impulso. Un metodo ulteriore per la produzione di impulsi a larga banda è definito “stimulated Raman scattering”, usato solo recentemente per la post-compressione di impulsi laser, ma caratterizzato da forti limiti per l’efficienza che può essere ottenuta. Per la prima volta, la stessa HCF sarà usata per sfruttare l’SRS per la post-compressione di un impulso laser. L’obiettivo di questa tesi è la generazione di impulsi a banda ultralarga, alta energia e ultrabrevi, ottenuti per SPM dell’impulso in una fibra cava e in un materiale solido in un primo momento. In seguito, la tecnica innovativa di post-compressione per stimulated Raman scattering verrà studiata. I sistemi verranno caratterizzati tramite l’analisi delle proprietà degli impulsi nei domini del tempo e delle frequenze. Verrà effettuato un confronto tra le diverse prestazioni che possono essere ottenute nei diversi sitemi, cosí come la caratterizzazione di un sistema ibrido costituito dalla sequenza dei setup costituiti da HCF e materiale solido. La funzionalità degli apparati sviluppati sarà dimostrata tramite specifiche misure delle proprietà degli impulsi in uscita.
Energy scaling of pulse post-compression techniques based on self-phase modulation and stimulated Raman scattering
COCCIA, GIULIO
2017/2018
Abstract
Ultrafast optics is currently one of the dominating areas of the scientific world for research and development. The study of sub-picosecond phenomena, which result to be too fast for electronic monitoring, has been the driving motivation for the generation of laser pulses in the femtosecond regime. Furthermore, the growing interest in ultrafast lasers is due to some fundamental applications like High Harmonic Genreration (HHG) or the production of attosecond pulses, which have been introduced only in the last 20 years. Such ultrashort light pulses, generated across a wide spectrum of frequencies with arbitrary electric field waveform, means that the force the light exerts on electrons in atoms and molecules can be controlled for the first time. In order to achieve these kind of performances high-energy, ultrashort, ultrabroadband laser pulses are required. A well-established technique for pulse shortening is the spectral broadening of laser pulses by self-phase modulation (SPM) in a single-mode optical fiber filled with gas followed by phase compensation in suitable phase-dispersive elements. This kind of approach has been developed since 1987 and it is particularly suitable for high-energies regime, where the damage of the optics constitutes the main limitation. Another very interesting technique to broaden a laser pulse by SPM is through the passage in a bulk material. However, distructive nonlinear processes have limited the useful input power to few megawatts and consequently not allowed the application of this process in the high energy-regime. Moreover, Kerr lens and breaking of the beam profile constitute a limit for the generation of reliable high-power and high-energy pulses. One more method for the production of broadband pulses is the so called stimulated Raman scattering (SRS), which just recently has been used as a technique for post-compression, with strong limitations on the achievable efficiency. For the first time the long HCF itself will be used to exploit SRS for the post-compression of the laser pulse. The goal of this thesis is the generation of ultrashort high-energy ultrabroadband pulses, achieved at first by broadening the input laser pulse through the propagation in Hollow Core Fiber and bulk materials. In a second moment, the innovative post-compression technique based on stimulated Raman scattering will be studied. The systems shall be carachterized by the analysis of the pulse properties in the time and frequency domains. A comparison between the achievable performances in the different setups shall be performed, as the study of an hybrid set-up consisting of a cascade of the HCF and Plates systems. The functionality of the developed apparatus shall be demonstrated through proof-of-principle measurements of the output pulse properties.File | Dimensione | Formato | |
---|---|---|---|
Master Thesis.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
19.43 MB
Formato
Adobe PDF
|
19.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/145729