This research provides a literature review on potential applications through Spirulina (microalgae) which can be a nature-based solution in order to tackle several environmental issues that come up during unconventional oil and gas production operations. Examples of such environmental issues are mainly fresh water consumption due to hydraulic fracturing process and carbon dioxide emissions. The objective of this work was to investigate carbon dioxide bio-sequestration potential of Spirulina and other application which can be done once it is grown such as; produced water treatment, pigment extraction and soil amendment. Initially, growth systems and needed environmental conditions for growing Spirulina were researched. Two main growth systems were found: Open systems for mainly large-scale applications and closed systems for laboratory scale applications. Optimum environmental parameters found were the following: 28-35 °C of temperature, 8-11 of pH, nitrogen, phosphorus, potassium, and carbon feed, agitation of the pond and illumination. Cost analysis regarding a Spirulina cultivation plant was made. Later on, carbon dioxide bio-sequestration potential of Spirulina was searched, as this microorganism grows and proliferates by photosynthesis reaction which requires a carbon source. This carbon source can be organic (carbon dioxide) or inorganic (bicarbonate). The following topic was pigment extraction application. Spirulina is a microalgae, as mentioned before, therefore it contains several pigments with different colors. These pigments can be used in food, cosmetic, pharmaceutical and nutraceutical industries as natural dye and antioxidant. Optimum method for the best yield of pigment extraction from Spirulina with a careful consideration of energy consumption was found. Market analysis for pigment (phycocyanin) was made. Produced water treatment was another topic included into this research, as oil and gas production require hydraulic fraction process. Heavy metal and radioactive material bio-accumulation potential of Spirulina was evaluated and compared to other microalgae strains by taking comparison studies done by researchers as reference. The last application assessed in this work was soil amendment potential of Spirulina. A study was evaluated within that chapter and comparisons in plant height, root length and number of leaves were made between different plants by using chemical fertilizer, Spirulina (as bio-fertilizer) and without any fertilizer (control group). Overall, for each application, results were promising. 50 tons/year/ha carbon dioxide bio-sequestration potential have been seen for 10 g/L/day productivity of Spirulina. Productivity increases by the time and with an increase of surface area, as long as needed environmental conditions are provided. Therefore, this number for carbon dioxide bio-sequestration has a tendency to increase. In case of pigment extraction, according to comparison studies, the method for highest yield can be obtained from pigment extraction was freezing and thawing method when it is applied to wet biomass. Because the literature indicates that, drying the biomass causes 50% of pigment loss. Produced water treatment potential of Spirulina was found high as well according to the evaluation of comparison studies. Produced water chemical composition of Total Austral and discharge standards in Argentina was compared and a pilot wastewater treatment plant was designed and cost analysis for such plant was done. Finally, in soil amendment chapter, comparative studies have shown that Spirulina can be an alternative to chemical fertilizers as the results of plant height, number of leaves and root length either greater than the plants grown by chemical fertilizers or similar. Overall, Spirulina has great potential and showed promising results in diverse applications. Spirulina has proven being a natural solution for different environmental concerns, and must be considered as a possible application for climate change mitigation and sustainable development studies.
Questa ricerca fornisce una revisione della letteratura sulle potenziali applicazioni attraverso Spirulina (microalghe) che può essere una soluzione basata sulla natura per affrontare diversi problemi ambientali che emergono durante le operazioni di produzione di petrolio e gas non convenzionali. Esempi di tali problemi ambientali sono principalmente il consumo di acqua dolce a causa del processo di fratturazione idraulica e delle emissioni di anidride carbonica. L'obiettivo di questo lavoro era quello di studiare il potenziale di biotestestrazione del biossido di carbonio della Spirulina e altre applicazioni che possono essere fatte una volta coltivato; ha prodotto il trattamento delle acque, l'estrazione del pigmento e la modifica del suolo. Inizialmente, sono stati studiati i sistemi di crescita e le condizioni ambientali necessarie per la crescita della Spirulina. Sono stati individuati due principali sistemi di crescita: sistemi aperti per applicazioni principalmente su larga scala e sistemi chiusi per applicazioni su scala di laboratorio. I parametri ambientali ottimali rilevati sono stati i seguenti: 28-35 ° C di temperatura, 8-11 di pH, azoto, fosforo, potassio e alimentazione di carbonio, agitazione del laghetto e illuminazione. È stata effettuata un'analisi dei costi relativa a un impianto di coltivazione della Spirulina. Successivamente, è stato cercato il potenziale di bio-sequestro della Spirulina del biossido di carbonio, poiché questo microrganismo cresce e prolifera per reazione di fotosintesi che richiede una fonte di carbonio. Questa fonte di carbonio può essere organica (anidride carbonica) o inorganica (bicarbonato). L'argomento seguente era l'applicazione per l'estrazione del pigmento. La spirulina è una microalga, come accennato prima, quindi contiene diversi pigmenti con colori diversi. Questi pigmenti possono essere utilizzati nelle industrie alimentari, cosmetiche, farmaceutiche e nutraceutiche come colorante naturale e antiossidante. È stato trovato il metodo ottimale per la migliore resa di estrazione del pigmento dalla spirulina con un'attenta considerazione del consumo energetico. È stata effettuata un'analisi di mercato per il pigmento (ficocianina). Il trattamento delle acque prodotto è stato un altro argomento incluso in questa ricerca, poiché la produzione di petrolio e gas richiede un processo di frazionamento idraulico. Il potenziale di bioaccumulo di Spirulina del metallo pesante e del materiale radioattivo è stato valutato e confrontato con altri ceppi di microalghe prendendo come riferimento studi di confronto condotti dai ricercatori. L'ultima applicazione valutata in questo lavoro era il potenziale di modifica del terreno di Spirulina. In questo capitolo è stato valutato uno studio e sono stati effettuati confronti tra altezza delle piante, lunghezza della radice e numero di foglie tra le diverse piante utilizzando fertilizzanti chimici, Spirulina (come bio-fertilizzante) e senza alcun fertilizzante (gruppo di controllo). Complessivamente, per ogni applicazione, i risultati sono stati promettenti. Sono stati osservati un potenziale di bio-sequestro di biossido di carbonio di 50 tonnellate / anno / ha per una produttività di 10 g / l / die di Spirulina. La produttività aumenta nel tempo e con un aumento della superficie, purché siano fornite le condizioni ambientali necessarie. Pertanto, questo numero di bio-sequestro di biossido di carbonio ha una tendenza ad aumentare. In caso di estrazione del pigmento, secondo gli studi di confronto, il metodo per la massima resa può essere ottenuto dall'estrazione del pigmento come metodo di congelamento e scongelamento quando è applicato alla biomassa umida. Perché la letteratura indica che l'essiccazione della biomassa causa il 50% della perdita di pigmento. Anche il potenziale di trattamento delle acque della Spirulina prodotto è risultato elevato secondo la valutazione degli studi di confronto. La composizione chimica dell'acqua prodotta di Total Austral e gli standard di scarico in Argentina sono stati confrontati e un impianto pilota di trattamento delle acque reflue è stato progettato e l'analisi dei costi per tale impianto è stata effettuata. Infine, nel capitolo sull'emendamento del suolo, studi comparativi hanno dimostrato che la Spirulina può essere un'alternativa ai fertilizzanti chimici in quanto i risultati di altezza della pianta, numero di foglie e lunghezza della radice sono maggiori delle piante coltivate da fertilizzanti chimici o simili. Nel complesso, Spirulina ha un grande potenziale e ha mostrato risultati promettenti in diverse applicazioni. Spirulina ha dimostrato di essere una soluzione naturale per diversi problemi ambientali e deve essere considerata come una possibile applicazione per la mitigazione dei cambiamenti climatici e gli studi sullo sviluppo sostenibile.
Nature based solution for CO2 emissions offset : spirulina microalgae cultivation
YILDIRIM, ZEYNEP RANA
2017/2018
Abstract
This research provides a literature review on potential applications through Spirulina (microalgae) which can be a nature-based solution in order to tackle several environmental issues that come up during unconventional oil and gas production operations. Examples of such environmental issues are mainly fresh water consumption due to hydraulic fracturing process and carbon dioxide emissions. The objective of this work was to investigate carbon dioxide bio-sequestration potential of Spirulina and other application which can be done once it is grown such as; produced water treatment, pigment extraction and soil amendment. Initially, growth systems and needed environmental conditions for growing Spirulina were researched. Two main growth systems were found: Open systems for mainly large-scale applications and closed systems for laboratory scale applications. Optimum environmental parameters found were the following: 28-35 °C of temperature, 8-11 of pH, nitrogen, phosphorus, potassium, and carbon feed, agitation of the pond and illumination. Cost analysis regarding a Spirulina cultivation plant was made. Later on, carbon dioxide bio-sequestration potential of Spirulina was searched, as this microorganism grows and proliferates by photosynthesis reaction which requires a carbon source. This carbon source can be organic (carbon dioxide) or inorganic (bicarbonate). The following topic was pigment extraction application. Spirulina is a microalgae, as mentioned before, therefore it contains several pigments with different colors. These pigments can be used in food, cosmetic, pharmaceutical and nutraceutical industries as natural dye and antioxidant. Optimum method for the best yield of pigment extraction from Spirulina with a careful consideration of energy consumption was found. Market analysis for pigment (phycocyanin) was made. Produced water treatment was another topic included into this research, as oil and gas production require hydraulic fraction process. Heavy metal and radioactive material bio-accumulation potential of Spirulina was evaluated and compared to other microalgae strains by taking comparison studies done by researchers as reference. The last application assessed in this work was soil amendment potential of Spirulina. A study was evaluated within that chapter and comparisons in plant height, root length and number of leaves were made between different plants by using chemical fertilizer, Spirulina (as bio-fertilizer) and without any fertilizer (control group). Overall, for each application, results were promising. 50 tons/year/ha carbon dioxide bio-sequestration potential have been seen for 10 g/L/day productivity of Spirulina. Productivity increases by the time and with an increase of surface area, as long as needed environmental conditions are provided. Therefore, this number for carbon dioxide bio-sequestration has a tendency to increase. In case of pigment extraction, according to comparison studies, the method for highest yield can be obtained from pigment extraction was freezing and thawing method when it is applied to wet biomass. Because the literature indicates that, drying the biomass causes 50% of pigment loss. Produced water treatment potential of Spirulina was found high as well according to the evaluation of comparison studies. Produced water chemical composition of Total Austral and discharge standards in Argentina was compared and a pilot wastewater treatment plant was designed and cost analysis for such plant was done. Finally, in soil amendment chapter, comparative studies have shown that Spirulina can be an alternative to chemical fertilizers as the results of plant height, number of leaves and root length either greater than the plants grown by chemical fertilizers or similar. Overall, Spirulina has great potential and showed promising results in diverse applications. Spirulina has proven being a natural solution for different environmental concerns, and must be considered as a possible application for climate change mitigation and sustainable development studies.File | Dimensione | Formato | |
---|---|---|---|
2019_04_YILDIRIM_Zeynep_Rana.pdf
accessibile in internet per tutti
Descrizione: Thesis-Zeynep Rana YILDIRIM-16-04-2019
Dimensione
1.84 MB
Formato
Adobe PDF
|
1.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/145872