In the last decades self-healing materials have become more and more interesting for the space industry, since they could lead to space suits and habitats able to repair after collision with MMOD. This would result in higher protection and safety for astronauts, and longer missions in the perspective of lunar bases establishment and manned exploration of Mars. The here proposed work studies and characterizes potential candidate materials in the space suits field. After describing the problem and the possible healing mechanisms, the focus is set on viscoelastic materials. A testing device is designed and built to perform puncture experiments on four different materials: two gels, an elastomer and an initially liquid substance that reticulates into elastomeric form when subject to UV radiation. The materials are initially kept between two vacuum bag layers and fixed on the central part of the apparatus by a ring; the system is pressurized at 0.3 bar relative pressure to reproduce the space suit’s internal conditions. Kevlar is subsequently introduced to analyze if and how the presence of a ripstop fabric affects sealing performances. Two puncture probes with 0.8 mm and 2 mm diameters are used, and two testing methods are adopted. The former focuses on pressure variation when the system is isolated from the related feed line, while the latter studies the flow rate variation after puncture to determine the sealing speed. The final results are compared with each other and with past studies. An analytical material model is then created for one of the elastomers, combining hyperelastic Yeoh contribution and Prony series linear viscoelastic representation. The related constants are computed and optimized by fitting tensile tests data with Abaqus and the Isight optimization and data matching tools. They are then inserted in an Abaqus simplified 2D model of the material’s specimen to simulate the puncture event. The radial variation of the hole in time is derived and exploited to compute the simulated flow rate, which is compared to the related experimental values to verify the model’s accuracy and determine how it can be improved.
Negli ultimi anni l’interesse per i materiali autoriparanti in ambito spaziale è cresciuto, essendo essi legati alla possibile creazione di tute e moduli abitativi capaci di ripararsi a seguito di impatti con micrometeoriti o detriti spaziali. Ciò porterebbe ad una maggiore protezione per gli astronauti ed a missioni più lunghe nella prospettiva futura di basi lunari o esplorazioni planetarie. Il presente lavoro descrive la caratterizzazione di materiali possibilmente utilizzabili nel campo delle tute spaziali. Dopo aver descritto i diversi meccanismi di autoriparazione, l’attenzione è focalizzata sulle sostanze viscoelastiche. Un apparato di prova è progettato e costruito per l’ideazione di esperimenti di foratura su due gel, un elastomero ed una sostanza inizialmente liquida, in grado di reticolare in elastomero se soggetta a radiazione UV. I materiali sono inizialmente posti tra due strati di sacco da vuoto e fissati tra la parte centrale dell’apparato ed un anello; il sistema è pressurizzato a 0.3 bar relativi per riprodurre le condizioni interne alla tuta spaziale. Il Kevlar è introdotto in un secondo tempo per analizzare i possibili effetti di un tessuto resistente a rottura. Due punzoni con diametri di 0.8 mm e 2 mm sono usati in due diversi tipi di test. Il primo studia la pressione dopo aver isolato il sistema dalla linea di alimentazione, il secondo analizza l’andamento di portata dopo foratura per determinare la rapidità di chiusura del foro. I risultati finali sono confrontati tra di loro e con studi precedenti. Un modello analitico è poi creato per uno degli elastomeri, combinando il contributo iperelastico di Yeoh con la serie di Prony per la viscoelasticità lineare. Le costanti associate sono calcolate ed ottimizzate tramite fitting di dati sperimentali con l’aiuto di Abaqus ed Isight; vengono poi inserite in un modello 2D semplificato del campione di materiale che simula la foratura in Abaqus. In seguito, la variazione radiale del foro viene ricavata ed utilizzata per calcolare la portata, poi confrontata con i dati sperimentali. Ciò permette infine di comprendere l’accuratezza del modello ed i miglioramenti che devono essere apportati.
Towards safer space suits with self-healing functionality
PERNIGONI, LAURA
2017/2018
Abstract
In the last decades self-healing materials have become more and more interesting for the space industry, since they could lead to space suits and habitats able to repair after collision with MMOD. This would result in higher protection and safety for astronauts, and longer missions in the perspective of lunar bases establishment and manned exploration of Mars. The here proposed work studies and characterizes potential candidate materials in the space suits field. After describing the problem and the possible healing mechanisms, the focus is set on viscoelastic materials. A testing device is designed and built to perform puncture experiments on four different materials: two gels, an elastomer and an initially liquid substance that reticulates into elastomeric form when subject to UV radiation. The materials are initially kept between two vacuum bag layers and fixed on the central part of the apparatus by a ring; the system is pressurized at 0.3 bar relative pressure to reproduce the space suit’s internal conditions. Kevlar is subsequently introduced to analyze if and how the presence of a ripstop fabric affects sealing performances. Two puncture probes with 0.8 mm and 2 mm diameters are used, and two testing methods are adopted. The former focuses on pressure variation when the system is isolated from the related feed line, while the latter studies the flow rate variation after puncture to determine the sealing speed. The final results are compared with each other and with past studies. An analytical material model is then created for one of the elastomers, combining hyperelastic Yeoh contribution and Prony series linear viscoelastic representation. The related constants are computed and optimized by fitting tensile tests data with Abaqus and the Isight optimization and data matching tools. They are then inserted in an Abaqus simplified 2D model of the material’s specimen to simulate the puncture event. The radial variation of the hole in time is derived and exploited to compute the simulated flow rate, which is compared to the related experimental values to verify the model’s accuracy and determine how it can be improved.File | Dimensione | Formato | |
---|---|---|---|
2019_04_Pernigoni.pdf
solo utenti autorizzati dal 05/04/2022
Descrizione: Testo della tesi
Dimensione
32.18 MB
Formato
Adobe PDF
|
32.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/145914