The deep understanding of the interaction between ionizing radiation and soft tissue is of vital importance for radiotherapy, one of the main types of cancer treatment. Radiotherapy uses beams of intense energy to cause severe damage in the DNA of malignant cells and inactivate them. The complexity of the damage caused by radiation and its biological effectiveness depends on the structure of particle's track at the scale of these subcellular targets, of the order of some nanometers. Microdosimetry and track-nanodosimetry provide the methodologies and tools to describe and comprehend this phenomenon and optimize the therapy. The goal of this thesis work is to conclude the construction and installation, along with the characterization of a novel wall-less avalanche-confinement Tissue Equivalent Proportional Counter, a peculiar microdosimeter designed and constructed to simulate nanometric sites of soft tissue down to 25 nm. This range of operation provides the means to perform the direct comparison between microdosimetric spectra and track-nanodosimetric distributions, thus a more complete understanding of radiation interaction and the consequences in living organisms. The optimal operation conditions have been experimentally established through the determination of the electronic transmission windows: moreover, obtained results were validated at a different facility. Several Monte Carlo simulations have been performed, firstly to corroborate empirical experience, and secondly to recreate future experiments and describe the influence of certain parameters, such as the primary particle's energy and charge state or the position of the primary track, in the nanodosimetric distribution.
Lo studio approfondito dell'interazione tra radiazione ionizzante e tessuto è di vitale importanza per la radioterapia, attualmente uno dei principali metodi per il trattamento del cancro. In particolare, l'adroterapia è basata sull'utilizzo di adroni carichi per causare gravi danni al DNA delle cellule tumorali. La complessità del danno e la sua efficacia biologica dipendono dalla struttura di traccia delle particelle nella scala di questi bersagli subcellulari, che hanno dimensioni tipiche di alcuni nanometri. La microdosimetria e la nanodosimetria forniscono le metodologie e gli strumenti per descrivere e comprendere questo fenomeno e ottimizzare la terapia. L'obiettivo di questo lavoro di tesi consiste nella costruzione, installazione e caratterizzazione di un nuovo microdosimetro a gas a confinamento di valanga (TEPC), progettato per simulare siti nanometrici nell'intervallo 500-25 nm. Tale studio è volto ad un primo confronto diretto tra spettri microdosimetrici e distribuzioni nanodosimetriche, che risulterà utile alla comprensione dell'eventuale correlazione tra le caratteristiche fisiche della radiazione e il conseguente effetto biologico. I parametri operativi del microdosimetro sono stati caratterizzati ed ottimizzati sperimentalmente attraverso la determinazione delle finestre di trasmissione utilizzando due specie di gas tessuto-equivalenti e diverse condizioni di irraggiamento. Sono state eseguite diverse simulazioni Monte Carlo, in primo luogo per corroborare l'esperienza empirica e in secondo luogo per riprodurre esperimenti futuri e descrivere l'influenza di alcuni parametri, quali l'energia della particella primaria, lo stato di carica e la posizione della traccia primaria, sulla distribuzione nanodosimetrica finale.
Characterization of a novel wall-less avalanche-confinement TEPC
MARTÍN RODRÍGUEZ, PATRICIA
2018/2019
Abstract
The deep understanding of the interaction between ionizing radiation and soft tissue is of vital importance for radiotherapy, one of the main types of cancer treatment. Radiotherapy uses beams of intense energy to cause severe damage in the DNA of malignant cells and inactivate them. The complexity of the damage caused by radiation and its biological effectiveness depends on the structure of particle's track at the scale of these subcellular targets, of the order of some nanometers. Microdosimetry and track-nanodosimetry provide the methodologies and tools to describe and comprehend this phenomenon and optimize the therapy. The goal of this thesis work is to conclude the construction and installation, along with the characterization of a novel wall-less avalanche-confinement Tissue Equivalent Proportional Counter, a peculiar microdosimeter designed and constructed to simulate nanometric sites of soft tissue down to 25 nm. This range of operation provides the means to perform the direct comparison between microdosimetric spectra and track-nanodosimetric distributions, thus a more complete understanding of radiation interaction and the consequences in living organisms. The optimal operation conditions have been experimentally established through the determination of the electronic transmission windows: moreover, obtained results were validated at a different facility. Several Monte Carlo simulations have been performed, firstly to corroborate empirical experience, and secondly to recreate future experiments and describe the influence of certain parameters, such as the primary particle's energy and charge state or the position of the primary track, in the nanodosimetric distribution.File | Dimensione | Formato | |
---|---|---|---|
2019_04_Martín_Rodríguez.pdf
Open Access dal 02/04/2022
Descrizione: Tesi completa
Dimensione
5.09 MB
Formato
Adobe PDF
|
5.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/145927