The development and the evolution of nowadays technologies depend mainly on developing and constructing new materials that can withstand the different scenarios of a specific application. In this work, lead-cooled fast-neutron fission reactors are taken as the application to be considered, since this type of reactors is considered a better solution for several drawbacks that face the current thermal reactors in use, such as, low Burnup, high-level radioactivity of nuclear wastes, etc. Because of the severe conditions in the core of such reactors, like irradiation, wear and corrosion, there will be some problems which may face this technology which are strictly related to the incore structural materials, namely, the cladding. The cladding serves as a barrier for radioactive materials which form inside the fuel pellets after a fission event, preventing them from leaking to the coolant, the cladding also serves as a component to keep the integrity of the fuel pins. As a solution for these phenomena, coatings have been introduced to protect the in-core materials, especially ceramic coatings, for their superior mechanical and thermal properties and their chemical inertness. In this study, aluminum oxide (alumina), Al2O3, has been chosen as a promising candidate ceramic to be applied as a coating for the protection of cladding material. It has been investigated intensely in the past and showed amazing behavior under thermal loads and in the erosive environment of lead. Pulsed Laser deposition technique has been used to deposit the alumina coatings on silicon substrates in order to study their thermo-mechanical properties. The elastic moduli of these coatings have been acquired using Brillouin Spectroscopy which is a non-destructive investigating technique by utilizing laser. The coefficient of thermal expansion of the investigated alumina has been measured using a relatively new experimental setup called the substrate curvature setup. The residual stresses arising within the as-deposit Al2O3 coatings have been studied as well, using the same setup. Furthermore, annealed Al2O3 samples at around 750 ℃ for 20 minutes, have been investigated using, again, Brillouin Spectroscopy to get their elastic moduli. At the beginning of this thesis work, yttrium oxide (yttria), Y2O3, was chosen as a promising protective coating for the fusion reactor application, but knowing, after doing some characterization, that it does crystallize, and thus, losing the appealing properties of the amorphous phase, it has been decided to switch to Al2O3. Nevertheless, some scattered data on Y2O3 are presented in this thesis work that may be interesting. It is worth noting that thermo-mechanical properties of the different samples are highly dependent on the micro-structure, morphology and composition of the films which, themselves, are dependent on the deposition technique and the parameters chosen in each technique. At the end of this thesis work, it is expected to get a full information of the just mentioned features which will, hopefully, help us to push the current frontier of this field a bit further.
Lo sviluppo e l'evoluzione delle tecnologie odierne dipendono principalmente dallo sviluppo e dalla costruzione di nuovi materiali in grado di resistere ai diversi scenari di un'applicazione specifica. In questo lavoro, i reattori a fissione a neutroni veloci raffreddati a piombo sono presi come l'applicazione da considerare, poiché questo tipo di reattori è considerato una soluzione migliore per diversi inconvenienti che affrontano i reattori termici attuali in uso, come, Burnup basso, alto - attività radioattiva di rifiuti nucleari, ecc. A causa delle gravi condizioni nel nucleo di tali reattori, come l'irradiazione, l'usura e la corrosione, ci saranno alcuni problemi che potrebbero incontrare questa tecnologia che sono strettamente correlati ai materiali strutturali interni, vale a dire il rivestimento. Il rivestimento funge da barriera per i materiali radioattivi che si formano all'interno delle pastiglie di combustibile dopo un evento di fissione, impedendo loro di fuoriuscire dal liquido di raffreddamento, il rivestimento funge anche da componente per mantenere l'integrità dei perni del combustibile. Come soluzione per questi fenomeni, sono stati introdotti rivestimenti per proteggere i materiali interni, in particolare i rivestimenti ceramici, per le loro superiori proprietà meccaniche e termiche e la loro inerzia chimica. In questo studio, l'ossido di alluminio (allumina), Al2O3, è stato scelto come candidato ceramico promettente da applicare come rivestimento per la protezione del materiale di rivestimento. È stato studiato intensamente in passato e ha mostrato un comportamento sorprendente sotto carichi termici e nell'ambiente erosivo del piombo. La tecnica di deposizione a laser pulsato è stata utilizzata per depositare i rivestimenti di allumina su substrati di silicio per studiarne le proprietà termomeccaniche. I moduli elastici di questi rivestimenti sono stati acquisiti utilizzando la spettroscopia di Brillouin che è una tecnica di indagine non distruttiva utilizzando il laser. Il coefficiente di espansione termica dell'allumina studiata è stato misurato utilizzando una configurazione sperimentale relativamente nuova chiamata impostazione della curvatura del substrato. Anche le sollecitazioni residue derivanti dai rivestimenti Al2O3 as-deposit sono state studiate utilizzando la stessa configurazione. Inoltre, campioni di Al2O3 ricotti a circa 750 ℃ per 20 minuti, sono stati studiati utilizzando, ancora una volta, la spettroscopia di Brillouin per ottenere i loro moduli elastici. All'inizio di questo lavoro di tesi, l'ossido di ittrio (yttria), Y2O3, è stato scelto come rivestimento protettivo promettente per l'applicazione del reattore a fusione, ma sapendo, dopo aver effettuato una caratterizzazione, che cristallizza, e quindi perdendo le proprietà accattivanti di la fase amorfa, è stato deciso di passare ad Al2O3. Tuttavia, alcuni dati sparsi su Y2O3 sono presentati in questo lavoro di tesi che potrebbe essere interessante. Alla fine di questo lavoro di tesi, ci si aspetta di avere una completa informazione delle caratteristiche appena menzionate che, si spera, ci aiuteranno a spingere un po 'più oltre l'attuale frontiera di questo campo.
Thermo-mechanical characterization of oxide coatings
SERAG, ESSAM SADIK TALAAT
2017/2018
Abstract
The development and the evolution of nowadays technologies depend mainly on developing and constructing new materials that can withstand the different scenarios of a specific application. In this work, lead-cooled fast-neutron fission reactors are taken as the application to be considered, since this type of reactors is considered a better solution for several drawbacks that face the current thermal reactors in use, such as, low Burnup, high-level radioactivity of nuclear wastes, etc. Because of the severe conditions in the core of such reactors, like irradiation, wear and corrosion, there will be some problems which may face this technology which are strictly related to the incore structural materials, namely, the cladding. The cladding serves as a barrier for radioactive materials which form inside the fuel pellets after a fission event, preventing them from leaking to the coolant, the cladding also serves as a component to keep the integrity of the fuel pins. As a solution for these phenomena, coatings have been introduced to protect the in-core materials, especially ceramic coatings, for their superior mechanical and thermal properties and their chemical inertness. In this study, aluminum oxide (alumina), Al2O3, has been chosen as a promising candidate ceramic to be applied as a coating for the protection of cladding material. It has been investigated intensely in the past and showed amazing behavior under thermal loads and in the erosive environment of lead. Pulsed Laser deposition technique has been used to deposit the alumina coatings on silicon substrates in order to study their thermo-mechanical properties. The elastic moduli of these coatings have been acquired using Brillouin Spectroscopy which is a non-destructive investigating technique by utilizing laser. The coefficient of thermal expansion of the investigated alumina has been measured using a relatively new experimental setup called the substrate curvature setup. The residual stresses arising within the as-deposit Al2O3 coatings have been studied as well, using the same setup. Furthermore, annealed Al2O3 samples at around 750 ℃ for 20 minutes, have been investigated using, again, Brillouin Spectroscopy to get their elastic moduli. At the beginning of this thesis work, yttrium oxide (yttria), Y2O3, was chosen as a promising protective coating for the fusion reactor application, but knowing, after doing some characterization, that it does crystallize, and thus, losing the appealing properties of the amorphous phase, it has been decided to switch to Al2O3. Nevertheless, some scattered data on Y2O3 are presented in this thesis work that may be interesting. It is worth noting that thermo-mechanical properties of the different samples are highly dependent on the micro-structure, morphology and composition of the films which, themselves, are dependent on the deposition technique and the parameters chosen in each technique. At the end of this thesis work, it is expected to get a full information of the just mentioned features which will, hopefully, help us to push the current frontier of this field a bit further.File | Dimensione | Formato | |
---|---|---|---|
Thesis book.pdf
accessibile in internet per tutti
Descrizione: Thesis book
Dimensione
4.26 MB
Formato
Adobe PDF
|
4.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/145942