The ever-growing energy demand in recent years has driven the energy sector toward the utilization of natural gas as a source of energy. The exploitation of all the natural gas reserves in this energetic transition era has become a crucial point and also CO2-rich reserves have been taken into account. Since the traditional technologies for carbon dioxide removal from CO2-rich streams can be highly expensive from an energetic point of view, cryogenic technologies have drawn the attention for the CO2-rich natural gas sweetening. Moreover, carbon dioxide is a greenhouse gas responsible for the continuous global warming beyond the natural threshold. An uncontrolled production or emission of the greenhouse gases constitutes a serious problem for the ecosystems of the planet, producing long-term climate changes. Cryogenic technologies can be applied successfully also to flue gas streams in order to reduce their carbon dioxide content before releasing into atmosphere. The thermodynamic modelling of the phase equilibria behind a cryogenic technology is an extremely important point to find its optimal operating conditions. In this work, a thermodynamic analysis involving the formation of a solid phase is performed on the aforementioned mixtures, including also the application to a syngas mixture. Several approaches are proposed and developed, and the results are exploited to evaluate the reliability of the RGibbs unit in Aspen Plus® V9.0, where a process scheme for the flue gas treatment is simulated. In particular, after a Dehydration section, a series of RGibbs units is used to simulate the performance of the Desublimation section, where a contact liquid is employed, providing the refrigeration duty required and being the fluid mean able to remove the solid phase from the unit. A Single Mixed Refrigerant cycle is also designed and simulated and, lastly, an energy analysis assesses the process from an energetic point of view through the Net Equivalent Methane method.
La domanda energetica sempre crescente negli ultimi anni ha spinto il settore energetico verso l’utilizzo di gas naturale come fonte energetica, rendendo inevitabile lo sfruttamento dei giacimenti di gas naturale ricchi di CO2. Poiché le tecnologie convenzionali per la rimozione di anidride carbonica da correnti ricche di questa possono essere altamente costose in termini energetici, le tecnologie criogeniche rappresentano una valida alternativa per l’addolcimento di gas naturale ricco in CO2. Inoltre, l’anidride carbonica è un gas serra responsabile del surriscaldamento globale oltre i limiti naturali. Produzioni ed emissioni incontrollati dei gas serra rappresentano una seria minaccia per gli equilibri degli ecosistemi naturali del pianeta, provocando cambiamenti climatici a lungo termine. Le tecnologie a bassa temperatura possono essere applicate con successo anche al trattamento di gas esausti per ridurre il contenuto di anidride carbonica prima di rilasciarli in atmosfera. La modellazione termodinamica degli equilibri di fase che si instaurano usando una tecnologia criogenica è un punto essenziale per trovare le condizioni operative ottimali. In questo lavoro viene svolta un’analisi termodinamica di equilibri di fase che coinvolgono la formazione di una fase solida considerando le tipologie di miscela sopracitate, ed includendo anche l’applicazione ad una corrente di syngas. Vengono proposti e sviluppati diversi approcci ed i risultati sono impiegati per confermare l’affidabilità dell’unità RGibbs in Aspen Plus® V9.0, dove uno schema di processo per il trattamento di una corrente di gas esausti viene simulato. Dopo una sezione di disidratazione, unità RGibbs in serie simulano le prestazioni della sezione di desublimazione, dove un liquido di contatto, atto a fornire le frigorie necessarie oltre che a servire come mezzo di rimozione per la fase solida formatasi nel desublimatore, viene impiegato. Un ciclo singolo a refrigerante misto viene proposto ed, infine, un’analisi energetica valuta il processo da un punto di vista energetico attraverso il metodo del Net Equivalent Methane.
Thermodynamic equilibria involving a solid phase for the CO2 removal from acid gases
COZZI, LUCA
2018/2019
Abstract
The ever-growing energy demand in recent years has driven the energy sector toward the utilization of natural gas as a source of energy. The exploitation of all the natural gas reserves in this energetic transition era has become a crucial point and also CO2-rich reserves have been taken into account. Since the traditional technologies for carbon dioxide removal from CO2-rich streams can be highly expensive from an energetic point of view, cryogenic technologies have drawn the attention for the CO2-rich natural gas sweetening. Moreover, carbon dioxide is a greenhouse gas responsible for the continuous global warming beyond the natural threshold. An uncontrolled production or emission of the greenhouse gases constitutes a serious problem for the ecosystems of the planet, producing long-term climate changes. Cryogenic technologies can be applied successfully also to flue gas streams in order to reduce their carbon dioxide content before releasing into atmosphere. The thermodynamic modelling of the phase equilibria behind a cryogenic technology is an extremely important point to find its optimal operating conditions. In this work, a thermodynamic analysis involving the formation of a solid phase is performed on the aforementioned mixtures, including also the application to a syngas mixture. Several approaches are proposed and developed, and the results are exploited to evaluate the reliability of the RGibbs unit in Aspen Plus® V9.0, where a process scheme for the flue gas treatment is simulated. In particular, after a Dehydration section, a series of RGibbs units is used to simulate the performance of the Desublimation section, where a contact liquid is employed, providing the refrigeration duty required and being the fluid mean able to remove the solid phase from the unit. A Single Mixed Refrigerant cycle is also designed and simulated and, lastly, an energy analysis assesses the process from an energetic point of view through the Net Equivalent Methane method.File | Dimensione | Formato | |
---|---|---|---|
2019_04_Cozzi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
2.84 MB
Formato
Adobe PDF
|
2.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/145987