This thesis was focused on the synthesis of complex macromolecules for drug delivery and active targeting. Biocompatible and biodegradable polymers based on poly(ε-caprolactone) (PCL) and poly(ethylene glycol) (PEG) were used to generate nanoparticles in water phase. The complex macromolecular architecture allowed a fine tuning of the particle size as well as the encapsulation of low molecular weight hydrophobic drugs. Through bioconjugation techniques, the surface of these nanoparticles can be functionalized with peptidic ligands, which are designed to bind specific receptors of tumor cells, or to cross specific cell membrane. A library of amphiphilic polymers capable of loading the hydrophobic drug was synthesized by Atom Transfer Radical Polymerization (ATRP) of different percentages of PEG and PCL macromonomers. In particular, PCL was achieved through Ring Opening Polymerization (ROP) of ε-caprolactone, using two different initiators. For all ATRP reactions, a multiarm macroinitiator was used, obtained by a ROP of ε-caprolactone. Firstly, a polymer composed by only commercial PEG macromonomers was obtained through ATRP, initiated by the multiarm macroinitiator. It showed good particle size distribution, being in a range of 20-30 nm, and a high capacity of drug encapsulation. Since this polymer could not be further functionalized, it was not applicable for active targeting. Therefore, two combopolymers with side chains composed by PEG (80%) and PCL (20%) (bearing propargyl or hydroxyl side group) were synthesized through ATRP, using multiarm macroinitiator. The triple bond was functionalized with a commercial PEG bearing an azide group, through an Azide-Alkyne click reaction, and structural characteristics of polymers before and after functionalization were studied. Click reaction conditions were investigated using a commercial methoxy PEG azide (N3-PEG-CH3). Given the versatility of this reaction, in the future the functionalization of the triple bond could be performed with an azide-PEG bearing a maleimide group, suitable for further functionalization (i.e. conjugation of peptide). Secondly, the polymer bearing hydroxyl end group was further processed to form active nanoparticles, according to the type of targeting desired. Hydroxyl esterification was performed, in order to obtain acrylates as terminal groups. Secondly, the polymer synthesized was used to form nanoparticles. Stealth nanoparticles were obtained in aqueous media through a standard nanoprecipitation method. Afterwards, they were functionalized with a peptide (Low Molecular Weigh Protamine, LMWP) through a Michael type addition. Finally, Doxorubicin (i.e. an easily traceable chemotherapic drug) was encapsulated and good encapsulation efficiency was obtained. Preliminary in vitro biological tests were carried out at Humanitas Research Hospital to evaluate cytotoxicity and uptake of the nanoparticles by glioblastoma cell lines.
Questa tesi è stata incentrata sulla sintesi di macromolecole complesse per la somministrazione di farmaci e il targeting attivo. Per formare nanoparticelle in fase acquosa sono stati utilizzati polimeri biocompatibili e biodegradabili a base di poli(ε-caprolattone) (PCL) e di glicole polietilenico (PEG). L’architettura macromolecolare complessa ha permesso un accurato controllo delle dimensioni delle particelle e dell'incapsulamento di farmaci idrofobici a basso peso molecolare. Attraverso tecniche di bioconiugazione, la superficie di queste nanoparticelle può essere funzionalizzata con leganti peptidici, i quali sono progettati per legare recettori specifici delle cellule tumorali, o per attraversare specifiche membrane cellulari. Una libreria di polimeri anfifilici in grado di caricare il farmaco idrofobico è stata sintetizzata tramite polimerizzazione radicalica per trasferimento atomico (ATRP) di diverse percentuali di macromonomeri PEG e PCL. In particolare, il PCL è stato ottenuto attraverso la polimerizzazione per apertura di anello (ROP) dell’ε-caprolattone, utilizzando due diversi iniziatori. Per tutte le reazioni ATRP è stato utilizzato un macroiniziatore multi braccia, ottenuto da una ROP dell’ε-caprolattone. In primo luogo, tramite ATRP è stato sintetizzato un polimero composto di soli macromonomeri di PEG commerciale, usando il macroiniziatore multi braccia. Il polimero prodotto mostrava una buona distribuzione dimensionale, essendo in un range di 20-30 nm e un'elevata capacità d’incapsulamento dei farmaci. Tuttavia, poiché non poteva essere ulteriormente funzionalizzato, non era applicabile per il targeting attivo. Pertanto, due co-polimeri con catene laterali composte di PEG (80%) e PCL (20%) (avente come gruppi terminali un propargile o un ossidrile) sono stati sintetizzati tramite ATRP, utilizzando sempre il macroiniziatore multi braccia. Il triplo legame è stato funzionalizzato con un PEG commerciale avente un’azide come gruppo terminale, attraverso la reazione di cicloaddizione azide-alchino, e sono state analizzate le caratteristiche strutturali dei polimeri prima e dopo la funzionalizzazione. Le condizioni di questa reazione sono state studiate utilizzando un metossi PEG azide commerciale (N3-PEG-CH3). Data la versatilità di questa reazione, in futuro la funzionalizzazione del triplo legame potrebbe essere eseguita con un PEG-azide contenente una maleimide come gruppo terminale, adatto ad un'ulteriore funzionalizzazione (i.e. la coniugazione del peptide). In secondo luogo, il polimero con il gruppo ossidrile è stato ulteriormente lavorato per formare nanoparticelle attive, adatte al tipo di targeting desiderato. Al fine di ottenere acrilati come gruppi terminali, è stata eseguita l'esterificazione dell'ossidrile e il polimero sintetizzato è stato utilizzato per formare nanoparticelle. Le nanoparticelle sono state ottenute attraverso un metodo standard di nanoprecipitazione in ambiente acquoso. In seguito, sono state funzionalizzate con un peptide (protamina a basso peso molecolare, LMWP) attraverso la reazione di addizione di Michael. Infine, è stata incapsulata la doxorubicina (i.e. un farmaco chemioterapico facilmente rintracciabile) ottenendo una buona efficienza di incapsulamento. Test biologici preliminari in vitro sono stati effettuati presso l’Istituto di Ricerca Humanitas per valutare la citotossicità e l'assorbimento delle nanoparticelle nelle cellule di glioblastoma.
Complex macromolecular architectures for drug delivery and active targeting
GIAMPIETRO, GIULIA
2017/2018
Abstract
This thesis was focused on the synthesis of complex macromolecules for drug delivery and active targeting. Biocompatible and biodegradable polymers based on poly(ε-caprolactone) (PCL) and poly(ethylene glycol) (PEG) were used to generate nanoparticles in water phase. The complex macromolecular architecture allowed a fine tuning of the particle size as well as the encapsulation of low molecular weight hydrophobic drugs. Through bioconjugation techniques, the surface of these nanoparticles can be functionalized with peptidic ligands, which are designed to bind specific receptors of tumor cells, or to cross specific cell membrane. A library of amphiphilic polymers capable of loading the hydrophobic drug was synthesized by Atom Transfer Radical Polymerization (ATRP) of different percentages of PEG and PCL macromonomers. In particular, PCL was achieved through Ring Opening Polymerization (ROP) of ε-caprolactone, using two different initiators. For all ATRP reactions, a multiarm macroinitiator was used, obtained by a ROP of ε-caprolactone. Firstly, a polymer composed by only commercial PEG macromonomers was obtained through ATRP, initiated by the multiarm macroinitiator. It showed good particle size distribution, being in a range of 20-30 nm, and a high capacity of drug encapsulation. Since this polymer could not be further functionalized, it was not applicable for active targeting. Therefore, two combopolymers with side chains composed by PEG (80%) and PCL (20%) (bearing propargyl or hydroxyl side group) were synthesized through ATRP, using multiarm macroinitiator. The triple bond was functionalized with a commercial PEG bearing an azide group, through an Azide-Alkyne click reaction, and structural characteristics of polymers before and after functionalization were studied. Click reaction conditions were investigated using a commercial methoxy PEG azide (N3-PEG-CH3). Given the versatility of this reaction, in the future the functionalization of the triple bond could be performed with an azide-PEG bearing a maleimide group, suitable for further functionalization (i.e. conjugation of peptide). Secondly, the polymer bearing hydroxyl end group was further processed to form active nanoparticles, according to the type of targeting desired. Hydroxyl esterification was performed, in order to obtain acrylates as terminal groups. Secondly, the polymer synthesized was used to form nanoparticles. Stealth nanoparticles were obtained in aqueous media through a standard nanoprecipitation method. Afterwards, they were functionalized with a peptide (Low Molecular Weigh Protamine, LMWP) through a Michael type addition. Finally, Doxorubicin (i.e. an easily traceable chemotherapic drug) was encapsulated and good encapsulation efficiency was obtained. Preliminary in vitro biological tests were carried out at Humanitas Research Hospital to evaluate cytotoxicity and uptake of the nanoparticles by glioblastoma cell lines.File | Dimensione | Formato | |
---|---|---|---|
TesiMagistrale_GIULIA_GIAMPIETRO.pdf
non accessibile
Descrizione: TESTO DELLA TESI
Dimensione
6.01 MB
Formato
Adobe PDF
|
6.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/145989