Tens of thousands pieces of debris over 10 cm in size are orbiting in the Low Earth Orbit. These objects are gradually attracted to our planet and, on av-erage, a few of them reenter the atmosphere every day, where they start anablation process that can lead to their total disintegration. Small characteris-tic sizes, combined with elevate speeds and hence very high temperatures, cancause the melting of the material already at high altitudes where the gas israrefied: the liquid layer formed on the surface is blown off as small dropletswhich eventually evaporate. Since artificial space debris is increasingly in thespotlight, the study of this kind of gas-surface interactions has become moreand more relevant in the last years.The objective of the thesis is to develop a methodology for studying the abla-tion of debris and in particular i) to simulate the heating up and the resultingformation of a molten layer and ii) predict the rate of mass lost during therarefied segment of the reentry path. Starting by considering only a slab ofmaterial subject to external forces and heat flux, the model is then completedwith the addition of the rarefied gas phase. The main contribution of this workis that it considers the thermal and dynamic coupling between the two phasesby completely relying on particle schemes: the Direct Simulation Monte Carlo(DSMC) for the gas phase and the Smoothed Particle Hydrodynamics (SPH)for the solid and liquid ones. Both make use of particles for the description ofthe problem, but their basic idea is different. SPH assumes a continuous de-scription of the flow, whereas DSMC leaves this concept in favor of a molecularrepresentation.Results are presented to describe the main features of the methodology, in par-ticular, a satisfactory analysis of the progressive melting of the debris and thedynamics of the formed melted layer under the influence of the rarefied floware shown. This novel approach of coupling DSMC with SPH has shown tobe very promising, and thanks to the modularity of the methods when addingnew features, the technique is certainly open for further developments and moredetailed analysis.
Decine di migliaia di detriti di diametro superiore a 10 cm orbitano all’interno della Low Earth Orbit (LEO). Attratti dal nostro pianeta, questi frammenti finiscono per rientrare in atmosfera dove vanno incontro ad un processo di ablazione che può portare alla loro totale disintegrazione. Alte velocita e temperature combinate a modeste dimensioni causano lo scioglimento del materiale già ad elevate altitudini dove il gas può considerarsi rarefatto: la parte fusa che si forma sulla superifice verrà soffiata via sotto forma di goccioline, per poi evaporare. Negli ultimi anni i detriti spaziali sono sempre più sotto i riflettoti e lo studio di queste interazioni gas-superficie sta assumendo sempre più maggior importanza. Scopo della tesi è di sviluppare un metodo per lo studio dell’ablazione dei detriti e in particolare i) di simularne il surriscaldamento e la conseguente formazione di uno strato fuso e ii) di prevederne il rateo di perdita di massa ponendo l’attenzione sul segmento rarefatto del percorso di rientro. Partendo col considerare una lastra di materiale soggetta a forze esterne e a un flusso di calore, il modello sarà poi completato con l’aggiunta di una fase di gas rarefatto. Il maggior contributo di questo lavoro è quello di considerare un accoppiamento termico e dinamico facendo totale affidamento su schemi a particelle: Direct Simulation Monte Carlo (DSMC) per la fase gassosa e Smoothed Particle Hydrodynamics (SPH) per la fase solida e liquida. Entrambi si basono su particelle per descrivere il problema, ma è l’idea di fondo a distinugere i due. SPH assume una descrizione continua del flusso, DSMC invece abbandona questo concetto in favore di una rappresentazione molecolare. La metodologia è riuscita nell’intento di descrivere l’interazione del gas rarefatto col detrito. In particolare vengono riportate analisi e osservazioni sulla progressiva fusione del materiale e sulla dinamica che caratterizza lo stato fuso. Questo approccio caratterizzato dall’accopiamento tra DSMC e SPH ha mostrato di essere molto promettente, e grazie alla flessibilità dei due metodi numerici, la tecnica è certamente aperta per futuri sviluppi e analisi.
Development of an ablation model for atmospheric entry flow in the framework of a particle based solver
SCANDELLI, HERMES
2017/2018
Abstract
Tens of thousands pieces of debris over 10 cm in size are orbiting in the Low Earth Orbit. These objects are gradually attracted to our planet and, on av-erage, a few of them reenter the atmosphere every day, where they start anablation process that can lead to their total disintegration. Small characteris-tic sizes, combined with elevate speeds and hence very high temperatures, cancause the melting of the material already at high altitudes where the gas israrefied: the liquid layer formed on the surface is blown off as small dropletswhich eventually evaporate. Since artificial space debris is increasingly in thespotlight, the study of this kind of gas-surface interactions has become moreand more relevant in the last years.The objective of the thesis is to develop a methodology for studying the abla-tion of debris and in particular i) to simulate the heating up and the resultingformation of a molten layer and ii) predict the rate of mass lost during therarefied segment of the reentry path. Starting by considering only a slab ofmaterial subject to external forces and heat flux, the model is then completedwith the addition of the rarefied gas phase. The main contribution of this workis that it considers the thermal and dynamic coupling between the two phasesby completely relying on particle schemes: the Direct Simulation Monte Carlo(DSMC) for the gas phase and the Smoothed Particle Hydrodynamics (SPH)for the solid and liquid ones. Both make use of particles for the description ofthe problem, but their basic idea is different. SPH assumes a continuous de-scription of the flow, whereas DSMC leaves this concept in favor of a molecularrepresentation.Results are presented to describe the main features of the methodology, in par-ticular, a satisfactory analysis of the progressive melting of the debris and thedynamics of the formed melted layer under the influence of the rarefied floware shown. This novel approach of coupling DSMC with SPH has shown tobe very promising, and thanks to the modularity of the methods when addingnew features, the technique is certainly open for further developments and moredetailed analysis.File | Dimensione | Formato | |
---|---|---|---|
2019_04_Scandelli.pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
4.63 MB
Formato
Adobe PDF
|
4.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146010