Ignition coils are essential components of all spark ignition engines. A specific ignition coil application is tested and the experimental waveforms are analyzed and processed. The total energy loss per cycle is determined through an energy balance. Extracting Joule losses in copper windings, the remaining energy loss is attributed to core losses. Different analytical models for core loss calculation present in literature are analyzed and one model is selected for each loss component. The selected analytical models are used to predict different core loss contributes in the active magnetic materials. The results obtained with the analytical models for different operating conditions are compared with FEM simulation results. The employed analytical models are validated by comparing the obtained results with the initial energy balance. In standard ignition coil operation, the analytical models underestimate additional losses with a maximum error of 20%. The power performance of different soft magnetic materials is evaluated using the analytical models developed. In addition, a newly developed enhanced ignition system is tested on the same ignition coil and an estimate of core losses based on the energy balance is presented. Finally, the ignition coil temperature rise at steady state is evaluated with different core material configurations. The mathematical model developed in this thesis can be improved considering the effect of asymmetrical hysteresis loops on hysteresis losses. Moreover, some measurement issues emerging in the integral function used to calculate the flux density waveform need to be solved in the continuation of this project. The core loss estimation method developed in this thesis will be optimized and used to determine the magnetic materials’ performance in the ignition coils’ design stage. The energetic performance of magnetic materials in ignition coils is of great interest because it allows to improve the ignition system performance leaving the geometry and the volume of ignition coils unaltered. This is of relevance by considering that a limited spatial footprint is an essential requirement for these electromagnetic components.
Le bobine di accensione sono componenti essenziali dei motori ad accensione per scintilla. Una specifica applicazione di bobina di accensione viene testata in laboratorio. L’energia persa viene determinata mediante un bilancio energetico. Scorporando le perdite per effetto Joule negli avvolgimenti, il restante lavoro perso viene attribuito alle perdite nel nucleo magnetico. Diversi modelli analitici presenti in letteratura per il calcolo delle perdite nel nucleo ferromagnetico vengono analizzati e un modello viene scelto per ciascun contributo di perdita considerando i diversi materiali magnetici attivi presenti nel nucleo. I risultati ottenuti con l’approccio analitico per diversi regimi di funzionamento vengono confrontati con i risultati di simulazioni FEM. La validità dei modelli analitici impiegati viene confermata mediante il bilancio energetico iniziale. I modelli utilizzati sottostimano le perdite addizionali con un errore massimo del 20%. La prestazione energetica di diversi materiali magnetici dolci viene valutata utilizzando i modelli analitici sviluppati. In seguito, un sistema di accensione potenziato viene testato, effettuando una stima delle perdite mediante un bilancio energetico. Infine, la sovratemperatura raggiunta dalla bobina a regime viene determinata. Le prestazioni dei materiali magnetici dolci di possibile impiego sono messe a confronto sulla base della differenza tra le sovratemperature stimate. L’accuratezza del modello matematico sviluppato in questa tesi può essere incrementata considerando l’effetto dei cicli d’isteresi asimmetrici sulle perdite per isteresi. Inoltre, alcuni problemi di misura che emergono dall’analisi integrale delle quantità misurate devono essere risolti nella continuazione di questo progetto. Il metodo di stima delle perdite nel nucleo magnetico verrà ottimizzato e utilizzato per determinare in fase di progettazione le prestazioni dei materiali magnetici. La prestazione energetica dei materiali magnetici nelle bobine di accensione è di grande interesse perché consente di migliorare le prestazioni delle bobine senza modificarne il volume, fissato dai severi limiti di ingombro delle applicazioni automotive.
Core loss estimation and energetic characterization of ignition coils for automotive applications
D'INCALCI, MATTEO CARLO
2017/2018
Abstract
Ignition coils are essential components of all spark ignition engines. A specific ignition coil application is tested and the experimental waveforms are analyzed and processed. The total energy loss per cycle is determined through an energy balance. Extracting Joule losses in copper windings, the remaining energy loss is attributed to core losses. Different analytical models for core loss calculation present in literature are analyzed and one model is selected for each loss component. The selected analytical models are used to predict different core loss contributes in the active magnetic materials. The results obtained with the analytical models for different operating conditions are compared with FEM simulation results. The employed analytical models are validated by comparing the obtained results with the initial energy balance. In standard ignition coil operation, the analytical models underestimate additional losses with a maximum error of 20%. The power performance of different soft magnetic materials is evaluated using the analytical models developed. In addition, a newly developed enhanced ignition system is tested on the same ignition coil and an estimate of core losses based on the energy balance is presented. Finally, the ignition coil temperature rise at steady state is evaluated with different core material configurations. The mathematical model developed in this thesis can be improved considering the effect of asymmetrical hysteresis loops on hysteresis losses. Moreover, some measurement issues emerging in the integral function used to calculate the flux density waveform need to be solved in the continuation of this project. The core loss estimation method developed in this thesis will be optimized and used to determine the magnetic materials’ performance in the ignition coils’ design stage. The energetic performance of magnetic materials in ignition coils is of great interest because it allows to improve the ignition system performance leaving the geometry and the volume of ignition coils unaltered. This is of relevance by considering that a limited spatial footprint is an essential requirement for these electromagnetic components.File | Dimensione | Formato | |
---|---|---|---|
TesiMCdIncalci.pdf
non accessibile
Descrizione: Unico file pdf che include tutta la tesi
Dimensione
6.79 MB
Formato
Adobe PDF
|
6.79 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146020