In this work we consider the domain decomposition Generalized Schwarz method for the solution of heterogeneus-coupling problems. The convergence properties of this method with respect to the Classical Schwarz method are well known in different case studies. With regard to the geometric point of view, the Generalized Schwarz method has been applied to different contexts, for example flat and cylindrical interfaces. In this thesis we move from an intense study of the general theory present in literature in which elliptic problems for a general interface (flat, cylindrical or spherical) in any dimension are examined. Here, we aim at developing a theoretical framework that could be directed to coupled problems with spherical and approximately spherical interfaces. We analyze in this work two main types of problems. The first one is the diffusion-reaction problem in a sphere. The second is the fluid-structure interaction problem in a sphere, with application to a biomedical case of study, namely, the abdominal aortic aneurysms. In both cases, several numerical results are presented to support the theoretical findings.
In questo lavoro consideriamo il metodo Generalized Schwarz come metodo di decomposizione di domini per la risoluzione di problemi di accoppiamento eterogeneo. Le ottime proprietà di convergenza di questo metodo rispetto al metodo di Schwarz classico sono ben note in differenti casi di studio. Da un punto di vista geometrico, il metodo Generalized Schwarz è stato applicato a diversi contesti, ad esempio nel caso di interfacce piatte o cilindriche. In questa tesi partiamo da un attento studio della teoria generale presente in letteratura in cui vengono esaminati problemi ellittici con un'interfaccia di forma generica (piatta, cilindrica o sferica) in dimensione qualsiasi. In questo lavoro l'obiettivo è quello di sviluppare una teoria che possa essere specifica per problemi con interfaccia sferica o approssimativamente sferica. Analizziamo in questa tesi due tipi di problemi. Il primo è il diffusione-reazione in una sfera. Il secondo è un problema di interazione fluido-struttura in una sfera, applicato a un caso di studio biomedico, in particolare all'aneurisma dell'aorta addominale. In entrambi i casi sono presentati risultati numerici per confermare le osservazioni teoriche.
Optimized Schwarz methods for spherical interfaces with application to fluid-structure interaction
SAMBATARO, GIULIA
2018/2019
Abstract
In this work we consider the domain decomposition Generalized Schwarz method for the solution of heterogeneus-coupling problems. The convergence properties of this method with respect to the Classical Schwarz method are well known in different case studies. With regard to the geometric point of view, the Generalized Schwarz method has been applied to different contexts, for example flat and cylindrical interfaces. In this thesis we move from an intense study of the general theory present in literature in which elliptic problems for a general interface (flat, cylindrical or spherical) in any dimension are examined. Here, we aim at developing a theoretical framework that could be directed to coupled problems with spherical and approximately spherical interfaces. We analyze in this work two main types of problems. The first one is the diffusion-reaction problem in a sphere. The second is the fluid-structure interaction problem in a sphere, with application to a biomedical case of study, namely, the abdominal aortic aneurysms. In both cases, several numerical results are presented to support the theoretical findings.File | Dimensione | Formato | |
---|---|---|---|
SambataroGiulia.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi di laurea Sambataro Giulia
Dimensione
2.21 MB
Formato
Adobe PDF
|
2.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146022