Nowadays the adoption of novel technologies and devices to lower the emissions of lean-burn vehicles is required to comply with the current stricter and stricter regulations (Euro VI). Therefore, the continuous development of exhaust gas after-treatment system appropriate for each adopted fuel together with the understanding and improvement of the already existing technologies play a key role in an increasingly better control of exhaust emissions. The NH3-SCR is the best application for the control of NOx emitted by lean-burn vehicles. Despite the NH3-SCR is a well-established application, few points have to be better understood and improved to face the poor deNOx efficiency typical of this application when the exhausts temperature is too low. One of these is the choice of the NH3-SCR catalyst which allows to enhance the NOx control. The understanding of the correlation existing between the catalyst formulation and the presence of catalytic sites with a specific activity towards the NOx reduction could be useful to improve the low-T efficiency of the process. Other issues can be caused by the low exhausts temperature which can consequentially affect the NOx removal. For example, unburned hydrocarbons, not totally converted in their dedicated converter units when the temperature is very low, may have an impact on the SCR process due to their interaction with the catalyst itself (hydrocarbon adsorption on active sites or block of the catalyst pores) or through side reactions with the SCR reactant. Another crucial point for the NOx control is related to urea decomposition to NH3. Indeed, the SCR process is limited by the temperature in which NH3 is available for the NOx reduction, decomposition which starts above 170°C. This issue requires the adoption of an additional system which avoids to release NOx at temperature below 170°C, storing NOx until the downstream SCR becomes active. Currently, new systems devoted to the storage of the NOx are developed and still studied, the Passive NOx Adsorber (PNA). This systems are not able to reduce NOx to N2 but nevertheless are able to store at low temperature nitrogen oxides and release them at higher temperature at which the downstream SCR is active. The present PhD thesis wants to address the still open aspects and issues regarding the abatement of the NOx gases above described. Three main topics were therefore investigated: (i) the role of SiO2/Al2O3 ratio and Cu loading on the activity and catalyst properties (acidity, Cu ions reducibility, ammonia and nitrates storage) of Cu-chabazite, one of the best commercial catalyst for the NH3-SCR process; (ii) the CH4 slip effect on the SCR performance; indeed, very limited information are available in literature on the impact on the NOx abetment when CH4 is present in the exhausts. (iii) the performance and the mechanism of one of the most promising system for the NOx storage at low temperature, the Pd-Chabazite system.
Negli ultimi anni, un crescente interesse nell’impatto ambientale causato dell’uomo ha permesso un grande sviluppo dei sistemi di abbattimento degli inquinanti. Il processo Selective Catalytic Reduction (SCR) è stato ampiamente sviluppato ed è attualmente la principale tecnologia per l’abbattimento degli NOx nei motori a combustione magra. Ciò nonostante, questi sistemi catalitici presentano ancora dei punti cruciali da investigare e migliorare al fine di poter garantire emissioni in regola con le sempre più restrittive legislazioni. Un aspetto importante è la scelta dell’appropriato sistema catalitico che consenta di spingere l’efficienza di smaltimento quando le temperature degli esausti sono molto basse. Capire la relazione esistente tra la formulazione catalitica e la possibilità di massimizzare la presenza di siti con un’elevata attività verso la riduzione di NOx già in un range di temperature basso, può conseguentemente comportare un miglioramento dell’efficienza di riduzione. Le basse temperature dei gas di scarico determinano ulteriori problematiche che possono a sua volta influenzare l’attività SCR. Per esempio, la non completa conversione di idrocarburi negli step catalitici dedicati determina la loro presenza nella miscela gassosa che raggiunge l’ultimo step dei sistemi di post trattamento dedicato alla conversione degli NOx ad N2. Gli idrocarburi potrebbero interferire con la finalità di questo step essendo delle specie capaci di bloccare i piccoli pori dei catalizzatori o di interferire col processo di riduzione stesso, adsorbendosi sui siti attivi o reagendo con i reagenti necessari per la conversione degli NOx. Un altro punto molto cruciale è legato alla decomposizione dell’urea ad NH3, l’agente riducente del processo SCR. Questa decomposizione avviene a temperature superiori di 170°C: nessuna reazione SCR può dunque avvenire al di sotto di questa temperatura. L’aggiunta di un ulteriore step al sistema di post trattamento è stato quindi necessario per limitare le emissioni di NOx quando l’SCR ancora non è attivo. Questi sistemi sono chiamati Passive NOx Adsorber (PNA) ed hanno esclusivamente il compito di immagazzinare gli ossidi di azoto finché la temperatura non sia quella in cui le reazioni SCR avvengono. La seguente tesi di dottorato ha lo scopo di affrontare alcuni di questi aspetti ancora aperti e dibattuti circa l’abbattimento degli ossidi di azoto. I tre principali argomenti investigati sono quindi: (i) il ruolo del rapporto SiO2/Al2O3 e del carico di rame sull’attività e le proprietà catalitiche (acidità, riducibilità degli ioni Cu, adsorbimento di NH3 a nitrati) di sistemi a base di Cu-chabazite, i migliori catalizzatori presenti in commercio per l’NH3-SCR; (ii) l’effetto dello slip di CH4 sulle performance SCR. Infatti, al momento poche informazioni sono presenti in letteratura circa l’impatto di questo idrocarburo sullo smaltimento degli NOx tramite SCR; (iii) le performance e il meccanismo di uno dei più promettenti sistemi per l’adsorbimento di NOx a basse temperature, i sistemi Pd-chabazite.
NOx control strategies for exhaust after-treatment systems on lean-burn vehicles
VILLAMAINA, ROBERTA
Abstract
Nowadays the adoption of novel technologies and devices to lower the emissions of lean-burn vehicles is required to comply with the current stricter and stricter regulations (Euro VI). Therefore, the continuous development of exhaust gas after-treatment system appropriate for each adopted fuel together with the understanding and improvement of the already existing technologies play a key role in an increasingly better control of exhaust emissions. The NH3-SCR is the best application for the control of NOx emitted by lean-burn vehicles. Despite the NH3-SCR is a well-established application, few points have to be better understood and improved to face the poor deNOx efficiency typical of this application when the exhausts temperature is too low. One of these is the choice of the NH3-SCR catalyst which allows to enhance the NOx control. The understanding of the correlation existing between the catalyst formulation and the presence of catalytic sites with a specific activity towards the NOx reduction could be useful to improve the low-T efficiency of the process. Other issues can be caused by the low exhausts temperature which can consequentially affect the NOx removal. For example, unburned hydrocarbons, not totally converted in their dedicated converter units when the temperature is very low, may have an impact on the SCR process due to their interaction with the catalyst itself (hydrocarbon adsorption on active sites or block of the catalyst pores) or through side reactions with the SCR reactant. Another crucial point for the NOx control is related to urea decomposition to NH3. Indeed, the SCR process is limited by the temperature in which NH3 is available for the NOx reduction, decomposition which starts above 170°C. This issue requires the adoption of an additional system which avoids to release NOx at temperature below 170°C, storing NOx until the downstream SCR becomes active. Currently, new systems devoted to the storage of the NOx are developed and still studied, the Passive NOx Adsorber (PNA). This systems are not able to reduce NOx to N2 but nevertheless are able to store at low temperature nitrogen oxides and release them at higher temperature at which the downstream SCR is active. The present PhD thesis wants to address the still open aspects and issues regarding the abatement of the NOx gases above described. Three main topics were therefore investigated: (i) the role of SiO2/Al2O3 ratio and Cu loading on the activity and catalyst properties (acidity, Cu ions reducibility, ammonia and nitrates storage) of Cu-chabazite, one of the best commercial catalyst for the NH3-SCR process; (ii) the CH4 slip effect on the SCR performance; indeed, very limited information are available in literature on the impact on the NOx abetment when CH4 is present in the exhausts. (iii) the performance and the mechanism of one of the most promising system for the NOx storage at low temperature, the Pd-Chabazite system.File | Dimensione | Formato | |
---|---|---|---|
Villamaina thesis 070419.pdf
non accessibile
Descrizione: Thesis text
Dimensione
3.25 MB
Formato
Adobe PDF
|
3.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146131