In the field of chemical engineering, the knowledge of fluid dynamics is of fundamental importance, since most of the chemical-processing operations present in a plant are carried out in whole or in part in the fluid phase. Examples of this type of operations can be found in biochemistry, energy, materials, oil&gas, pharmaceuticals, polymers, etc... All this emphasis on fluids makes sense especially for two reasons: first of all, under typical process conditions, a huge number of materials exist in liquid or gaseous phase (or they can still be transformed into such phases). Secondly, it is generally more convenient to work with fluids than with solids. With reference to this, even some operations with the solids can be conducted in a "quasi-fluid" manner, such as fluidized-bed catalytic reactors, and the transport of carbon particles in pipes where water is used as a medium for transport and agitation. In order to describe correctly and completely what happens inside an equipment, unfortunately the solution of the fluid flow is not sufficient. The reason for this is linked to the fact that in the process equipment of a chemical plant (heat exchangers, reactors, separation units, pumps, pipes, etc...), the flow is coupled to the transport of mass and/or energy. While in previous decades empirical correlations and experiments were the most used tools, nowadays these simplifications can be revised or replaced, also trying to understand in detail the coupling between flow, mass, and energy transfer. Industry must invest in the development of new technologies as they allow to reduce costs and increase profits, while ensuring compliance with increasingly stringent regulations. For decades, the aerospace, automotive and defense industries are using simulations for the design and development of new products, as they minimize the costs of physical testing, assessing new concepts and product performance in a low-risk virtual environment. The computational techniques coupled with the most advanced experimental techniques are the most comprehensive and complete tool available to the engineers to assist them during the design and management phases. One of the most used computational techniques is computational fluid dynamics (CFD). In comparison to traditional approaches, which are based on experiments and correlations to take into account non-idealities during project phases, CFD is able to guarantee a more detailed point of view: the calculated solutions provide complete data on fields of velocity, temperature, species, and so on, that engineers can use to better understand the physics of the problem. This PhD project is focused on the analysis and the design of unconventional equipment using CFD. The CFD code chosen is the commercial software ANSYS Fluent, one of the most widespread programs available in the market. This tool allows to simulate a wide range of thermo-fluid-dynamics phenomena, providing a comprehensive set of advanced physical models capable of accurately describe fluxes of both compressible and incompressible fluids, heat exchange processes, turbulent flows, multi-phase fluxes and more.
Nel campo dell'ingegneria chimica, la conoscenza della fluidodinamica è di fondamentale importanza, poiché la maggior parte delle operazioni di trattamento chimico presenti in un impianto vengono eseguite in tutto o in parte nella fase fluida. Esempi di questo tipo di operazioni possono essere trovati in biochimica, energia, materiali, industria petrolifera, prodotti farmaceutici, polimeri, ecc... Tutta questa enfasi sui fluidi ha senso soprattutto per due ragioni: prima di tutto, in condizioni di processo tipiche, un grandissimo numero di materiali è in fase liquida o gassosa (o possono ancora essere trasformati in tali fasi). In secondo luogo, è generalmente più conveniente lavorare con i fluidi che con i solidi. Con riferimento a questo, anche alcune operazioni con i solidi possono essere condotte in un modo "quasi fluido", come i reattori catalitici a letto fluido, e il trasporto di particelle di carbonio in tubi dove l'acqua è usata come mezzo per il trasporto e l'agitazione. Per descrivere correttamente e completamente ciò che accade all'interno di un'apparecchiatura, purtroppo la soluzione del campo di moto non è sufficiente. La ragione di ciò è legata al fatto che nelle apparecchiature di processo di un impianto chimico (scambiatori di calore, reattori, unità di separazione, pompe, tubi, ecc ...), il flusso è accoppiato al trasporto di massa e/o energia. Mentre nei decenni precedenti le correlazioni empiriche e gli esperimenti erano gli strumenti più utilizzati, al giorno d'oggi queste semplificazioni possono essere riviste o sostituite, cercando anche di capire in dettaglio l'accoppiamento tra flusso, materia e energia. L'industria deve investire nello sviluppo di nuove tecnologie in quanto consente di ridurre i costi e aumentare i profitti, garantendo al contempo il rispetto di normative sempre più severe. Da decenni le industrie aerospaziale, automobilistica e della difesa stanno utilizzando simulazioni per la progettazione e lo sviluppo di nuovi prodotti, in quanto riducono al minimo i costi dei test fisici, valutando nuove configurazioni e le prestazioni del prodotto in un ambiente virtuale a basso rischio. Le tecniche computazionali abbinate alle tecniche sperimentali più avanzate sono lo strumento più completo a disposizione degli ingegneri per assisterli durante le fasi di progettazione e gestione. Una delle tecniche computazionali più utilizzate è la fluidodinamica computazionale (CFD). Rispetto agli approcci tradizionali, basati su esperimenti e correlazioni per tenere conto delle non idealità durante le fasi del progetto, la CFD è in grado di garantire un punto di vista più dettagliato: le soluzioni calcolate forniscono dati completi su campi di velocità, temperatura, specie e così via, che gli ingegneri possono utilizzare per capire meglio la fisica del problema. Questo progetto di dottorato si concentra sull'analisi e la progettazione di apparecchiature non convenzionali mediante CFD. Il codice CFD scelto è il software commerciale ANSYS Fluent, uno dei programmi più diffusi disponibili sul mercato. Questo strumento consente di simulare un'ampia gamma di fenomeni termofluidodinamici, fornendo un insieme completo di modelli fisici avanzati in grado di descrivere con precisione flussi di fluidi comprimibili e incomprimibili, processi di scambio termico, flussi turbolenti, flussi multifase e altro ancora.
Analysis and design of unconventional equipment using CFD
RIZZOTTO, MATTEO
Abstract
In the field of chemical engineering, the knowledge of fluid dynamics is of fundamental importance, since most of the chemical-processing operations present in a plant are carried out in whole or in part in the fluid phase. Examples of this type of operations can be found in biochemistry, energy, materials, oil&gas, pharmaceuticals, polymers, etc... All this emphasis on fluids makes sense especially for two reasons: first of all, under typical process conditions, a huge number of materials exist in liquid or gaseous phase (or they can still be transformed into such phases). Secondly, it is generally more convenient to work with fluids than with solids. With reference to this, even some operations with the solids can be conducted in a "quasi-fluid" manner, such as fluidized-bed catalytic reactors, and the transport of carbon particles in pipes where water is used as a medium for transport and agitation. In order to describe correctly and completely what happens inside an equipment, unfortunately the solution of the fluid flow is not sufficient. The reason for this is linked to the fact that in the process equipment of a chemical plant (heat exchangers, reactors, separation units, pumps, pipes, etc...), the flow is coupled to the transport of mass and/or energy. While in previous decades empirical correlations and experiments were the most used tools, nowadays these simplifications can be revised or replaced, also trying to understand in detail the coupling between flow, mass, and energy transfer. Industry must invest in the development of new technologies as they allow to reduce costs and increase profits, while ensuring compliance with increasingly stringent regulations. For decades, the aerospace, automotive and defense industries are using simulations for the design and development of new products, as they minimize the costs of physical testing, assessing new concepts and product performance in a low-risk virtual environment. The computational techniques coupled with the most advanced experimental techniques are the most comprehensive and complete tool available to the engineers to assist them during the design and management phases. One of the most used computational techniques is computational fluid dynamics (CFD). In comparison to traditional approaches, which are based on experiments and correlations to take into account non-idealities during project phases, CFD is able to guarantee a more detailed point of view: the calculated solutions provide complete data on fields of velocity, temperature, species, and so on, that engineers can use to better understand the physics of the problem. This PhD project is focused on the analysis and the design of unconventional equipment using CFD. The CFD code chosen is the commercial software ANSYS Fluent, one of the most widespread programs available in the market. This tool allows to simulate a wide range of thermo-fluid-dynamics phenomena, providing a comprehensive set of advanced physical models capable of accurately describe fluxes of both compressible and incompressible fluids, heat exchange processes, turbulent flows, multi-phase fluxes and more.File | Dimensione | Formato | |
---|---|---|---|
2019_04_PhD_Rizzotto.pdf
non accessibile
Descrizione: Tesi Dottorato
Dimensione
12.72 MB
Formato
Adobe PDF
|
12.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146132