Coronary artery diseases (CADs) are cardiovascular pathologies caused by the gradual growth of atherosclerotic plaques inside the coronary arteries, which results in vessel narrowing and further cardiovascular complications. Nowadays, CADs remain the leading cause of mortality worldwide and account for over 4 million deaths per year in Europe. Scientific research dedicated much effort to develop minimally invasive techniques such as percutaneous coronary intervention (PCI), among which stenting procedure can be found. First generation of stents were metal-alloy structures known as bare metal stents (BMSs), while in the present days, newest generations of stents such as drug-eluting stents (DESs) and bioresorbable vascular scaffolds (BVSs) are at study. In the present thesis, the Synergy™ Everolimus-Eluting Platinum Chromium Coronary Stent System (Boston Scientific Ltd) is taken in analysis to assess its mechanical behaviour both in free expansion and confined deployment scenarios. Despite the advantages introduced by minimally invasive PCI surgery, limiting size and manoeuvrability of coronary stents make difficult to evaluate device behaviour either in vitro or in vivo. To overcome these limitations, virtual models are requested to pursue a rigorous mechanical description of stent behaviour in clinical scenarios. The present work was therefore developed within this framework as part of the broader European Union's Horizon 2020 funding project InSilc: In-silico trials for drug-eluting BVS development and evaluation. Therefore, it is intended to suggest a methodology for developing an advanced numerical model of a novel PtCr DES stent, with the support of experimental validation. The main requirements to be fulfilled are the ability to reproduce stent mechanical behaviour, assessed by means of free expansion and standard bench test analyses, and to predict the interaction with a vessel, estimated with confined deployment. Results obtained showed a good agreement both in free expansion and confined deployment scenarios, thus proving the robustness of the numerical model. Despite this finding, some limits were outlined and considered as a starting point for future developments: - from the numerical point of view, the effects of unknown parameters, such as the one related to balloon material and geometry, stent material hardening and expansion dynamic, are to be considered of utmost importance when it comes to deal with the explicit solver. Moreover, new strategies, such as restarting a simulation from a deformed geometry provided with its current state of stress or the employment of implicit method, may be explored to face unsolved dynamics issues and reduce computational effort; - the experimental point of view, free expansion requests a further investigation of the device expansion mechanism in terms of burst pressure and symmetrical/asymmetrical opening and its potential influence on a confined deployment scenario. It is important to underline that aforementioned uncertainties, may be negligible when more realistic conditions, such as deployment in a patient-specific atherosclerotic vessel, are considered. In conclusion, the findings and methods presented in this thesis can be used for the development of more complex numerical model to obtain quick and informed answers to several patient-specific scenarios.
Le disfunzioni dell'arteria coronaria sono patologie cardiovascolari causate dalla crescita di placche aterosclerotiche all'interno del vaso, che possono portare alla graduale occlusione dello stesso e indurre ulteriori complicazioni cardiache. Ad oggi queste patologie rimangono tra le principali cause di morte in tutto il mondo e in Europa, sono responsabili di circa 4 milioni di decessi ogni anno. A fronte di ciò, negli ultimi tempi, la ricerca scientifica ha concentrato i propri sforzi sullo sviluppo di tecniche mini-invasive, tra cui si annoverano le procedure di stenting. Nella prima generazione, questi dispositivi erano caratterizzati da una struttura in leghe metalliche e per questo denominati bare metal stent (BMS). Al giorno d'oggi, nuove generazioni sono allo studio, come gli stent a rilascio di farmaco (DES) o quelli bioriassorbibili (BVS). Nonostante la chirurgia mini-invasiva abbia introdotto indiscussi vantaggi nell'ambito di interventi coronarici percutanei (PCI), la piccola dimensione e la difficile manovrabilità degli stent coronarici hanno reso difficoltosa la corretta valutazione del dispositivo sia in vitro che in vivo. Per superare queste limitazioni, sono stati sviluppati modelli virtuali in grado di fornire una rigorosa descrizione del comportamento del dispositivo in diversi scenari clinici. Il presente lavoro è stato sviluppato all'interno del progetto europeo Insilc: In-silico trials for drug-eluting BVS development and evaluation e si propone di suggerire una metodologia, supportata da una validazione sperimentale, per lo sviluppo di un modello numerico avanzato di un nuovo stent in PtCr a rilascio di farmaco. I principali requisiti che si mira a soddisfare sono l'abilità di riprodurre il comportamento strutturale dello stent, valutato attraverso prove di espansione libera e test meccanici standard, e di predire l'interazione del dispositivo con un vaso, attraverso prove di espansione confinata. I risultati ottenuti mostrano una buona correlazione in entrambi gli scenari di espansione libera e confinata a riprova della robustezza del modello implementato. Nonostante ciò, alcuni limiti sono stati riscontrati e considerati come punto di partenza per sviluppi futuri: - dal punto di vista numerico, gli effetti di parametri incogniti come quelli legati alla modellazione della geometria e del materiale del palloncino, alla descrizione del comportamento plastico dello stent e alla dinamica di espansione, devono essere considerati con cura specialmente nel caso di simulazioni in esplicito. Inoltre, nuove strategie, come quella di costruire una simulazione a partire da una configurazione deformata provvista del suo stato di sforzo e deformazione residuo o l'impiego del risolutore implicito, possono essere esplorate con il fine di affrontare i problemi di dinamica irrisolti nonché di ridurre lo sforzo computazionale richiesto; - dal punto di vista sperimentale, si ritiene che l'espansione libera richieda un'ulteriore indagine sul meccanismo di apertura dello stent soprattutto in termini di pressione di soglia e simmetria/asimmetria di apertura, e i loro potenziali effetti in uno scenario di espansione confinata. È importante sottolineare che le suddette incertezze potrebbero essere comunque trascurabili nel caso si prendano in considerazione scenari più realistici e quindi soggetti a maggiori incertezze, come ad esempio l'espansione in vasi aterosclerotici ricostruiti da pazienti. In conclusione, si ritiene che i metodi e i risultati del presente lavoro di tesi possano essere usati per lo sviluppo di modelli numerici più complessi al fine di ottenere risposte veloci ed informate in diversi scenari paziente-specifici.
Computational and experimental investigation of the mechanical behaviour of a platinum-chromium coronary stent
BERNINI, MARTINA;LUCCHETTI, AGNESE
2017/2018
Abstract
Coronary artery diseases (CADs) are cardiovascular pathologies caused by the gradual growth of atherosclerotic plaques inside the coronary arteries, which results in vessel narrowing and further cardiovascular complications. Nowadays, CADs remain the leading cause of mortality worldwide and account for over 4 million deaths per year in Europe. Scientific research dedicated much effort to develop minimally invasive techniques such as percutaneous coronary intervention (PCI), among which stenting procedure can be found. First generation of stents were metal-alloy structures known as bare metal stents (BMSs), while in the present days, newest generations of stents such as drug-eluting stents (DESs) and bioresorbable vascular scaffolds (BVSs) are at study. In the present thesis, the Synergy™ Everolimus-Eluting Platinum Chromium Coronary Stent System (Boston Scientific Ltd) is taken in analysis to assess its mechanical behaviour both in free expansion and confined deployment scenarios. Despite the advantages introduced by minimally invasive PCI surgery, limiting size and manoeuvrability of coronary stents make difficult to evaluate device behaviour either in vitro or in vivo. To overcome these limitations, virtual models are requested to pursue a rigorous mechanical description of stent behaviour in clinical scenarios. The present work was therefore developed within this framework as part of the broader European Union's Horizon 2020 funding project InSilc: In-silico trials for drug-eluting BVS development and evaluation. Therefore, it is intended to suggest a methodology for developing an advanced numerical model of a novel PtCr DES stent, with the support of experimental validation. The main requirements to be fulfilled are the ability to reproduce stent mechanical behaviour, assessed by means of free expansion and standard bench test analyses, and to predict the interaction with a vessel, estimated with confined deployment. Results obtained showed a good agreement both in free expansion and confined deployment scenarios, thus proving the robustness of the numerical model. Despite this finding, some limits were outlined and considered as a starting point for future developments: - from the numerical point of view, the effects of unknown parameters, such as the one related to balloon material and geometry, stent material hardening and expansion dynamic, are to be considered of utmost importance when it comes to deal with the explicit solver. Moreover, new strategies, such as restarting a simulation from a deformed geometry provided with its current state of stress or the employment of implicit method, may be explored to face unsolved dynamics issues and reduce computational effort; - the experimental point of view, free expansion requests a further investigation of the device expansion mechanism in terms of burst pressure and symmetrical/asymmetrical opening and its potential influence on a confined deployment scenario. It is important to underline that aforementioned uncertainties, may be negligible when more realistic conditions, such as deployment in a patient-specific atherosclerotic vessel, are considered. In conclusion, the findings and methods presented in this thesis can be used for the development of more complex numerical model to obtain quick and informed answers to several patient-specific scenarios.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Bernini_Lucchetti_2017-2018.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
25.66 MB
Formato
Adobe PDF
|
25.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146195