Hutchinson-Gilford syndrome, or progeria, is a rare genetic condition that manifests itself in the individual as premature aging and causes the onset of diseases typically found in old age. The study presented in this thesis provides a macroscopic characterization of the murine bone tissue, made progeric and treated with two healing treatments, through four-point bending tests, conducted by the Medical Technology Laboratory of the Rizzoli Orthopedic Institute of Bologna (IOR), and the creation of numerical models with finite elements to simulate such tests. The realization of the models is aimed at a more complete understanding of how the geometrical and constitutive factors contribute to the overall mechanical response of the bone segment in analysis and allows us to lay the groundwork, once validated the models, for an effective computational tool with forecasting purposes, so as to limit as much as possible the number of animals sacrificed in the experiments. In addition, a characterization of the bone tissue is also undertaken by means of nanoindentation tests performed on the same progeric samples subjected to bending tests, to verify and quantify any effects on the mechanical response of the bone tissue to smaller dimensional scales. For this purpose, the study proposes an experimental protocol for the small-scale characterization of murine bone tissue by nanoindentation. The final phase of the work consists in verifying the need to enrich the numerical models with information deriving from the mechanical properties of the tissue at the small scale.
La sindrome di Hutchinson-Gilford, o progeria, è una rara patologia genetica che si manifesta nell'individuo come un invecchiamento precoce e causa l'insorgere di malattie riscontrabili tipicamente in età avanzata. Lo studio presentato in questa tesi prevede una caratterizzazione macroscopica del tessuto osseo murino, reso progerico e sottoposto a due trattamenti curativi differenti, attraverso prove di flessione a quattro punti, condotte dal Laboratorio di Tecnologia Medica dell'Istituto Ortopedico Rizzoli di Bologna (IOR), e la creazione di modelli numerici agli elementi finiti che vadano a simulare tali prove. La realizzazione di tali modelli è rivolta ad una più completa comprensione di come i fattori geometrici e costitutivi contribuiscano alla risposta meccanica complessiva del segmento osseo in analisi e permette di porre le basi, una volta validati i modelli, per un efficace strumento computazionale con finalità previsionali, in modo da limitare il più possibile il numero di animali sacrificati in sede sperimentale. In aggiunta, viene intrapresa anche una caratterizzazione del tessuto osseo per mezzo di prove di nanoindentazione operate sugli stessi campioni progerici sottoposti a prova a flessione, per verificare e quantificare eventuali effetti sulla risposta meccanica del tessuto osseo a scale dimensionali più piccole. A questo scopo lo studio propone un protocollo sperimentale di caratterizzazione alla piccola scala del tessuto osseo murino mediante nanoindentazione. La fase conclusiva del lavoro consiste nel verificare la necessità di arricchire i modelli numerici con informazioni derivanti dalle proprietà meccaniche del tessuto alla piccola scala.
Caratterizzazione meccanica del tessuto osseo mediante nanoindentazione e flessione macroscopica in un modello murino di sindrome di Hutchinson-Gilford
CALVI, LUCA LORENZO;ARNARDI, STEFANO
2017/2018
Abstract
Hutchinson-Gilford syndrome, or progeria, is a rare genetic condition that manifests itself in the individual as premature aging and causes the onset of diseases typically found in old age. The study presented in this thesis provides a macroscopic characterization of the murine bone tissue, made progeric and treated with two healing treatments, through four-point bending tests, conducted by the Medical Technology Laboratory of the Rizzoli Orthopedic Institute of Bologna (IOR), and the creation of numerical models with finite elements to simulate such tests. The realization of the models is aimed at a more complete understanding of how the geometrical and constitutive factors contribute to the overall mechanical response of the bone segment in analysis and allows us to lay the groundwork, once validated the models, for an effective computational tool with forecasting purposes, so as to limit as much as possible the number of animals sacrificed in the experiments. In addition, a characterization of the bone tissue is also undertaken by means of nanoindentation tests performed on the same progeric samples subjected to bending tests, to verify and quantify any effects on the mechanical response of the bone tissue to smaller dimensional scales. For this purpose, the study proposes an experimental protocol for the small-scale characterization of murine bone tissue by nanoindentation. The final phase of the work consists in verifying the need to enrich the numerical models with information deriving from the mechanical properties of the tissue at the small scale.File | Dimensione | Formato | |
---|---|---|---|
2019_04_Arnardi_Calvi.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
3.6 MB
Formato
Adobe PDF
|
3.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146198