In the field of high-speed rail transport, the need to use suspensions with adjustable damping characteristics to increase passengers’ comfort, reduce transmission of vibrations to the carbody and thus increase driving stability, has led to the introduction and development of semi-active and full-active suspensions. The yaw damper is generally placed longitudinally between the bogie frame and the carbody and has the purpose of limiting the lateral oscillation motion of the bogie caused mainly by the conicity of the wheels rigidly connected to each other and which can lead to dynamic instability at high speeds. The passive hydraulic yaw damper is adapted through the introduction of an electronically controlled servo-valve which allows the oil to be regulated between the two damper chambers, thus adjusting the damping characteristic. A numerical model of semi-active and full-active yaw damper is introduced in Simulink together with the control logics used to regulate its characteristic. The multibody model of high-speed train is instead obtained through Simpack software. The control logics introduced for the yaw damper are then tested by numerical co-simulations showing an increase in driving stability both in the case of a semi-active and full-active solution. The control logics for the semi-active damper were finally analyzed by laboratory tests, using a Hardware-in-the-Loop approach. The results of these tests show that the type of control logic adopted for controlling the semi-active damper plays a very important role in determining the stability of the vehicle.
Nell’ambito del trasporto ferroviario ad alta velocità la necessità di utilizzare sospensioni con caratteristiche smorzanti regolabili per aumentare il comfort dei passeggeri, diminuire la trasmissione di vibrazioni alla cassa e aumentare quindi la stabilità di marcia, ha portato all’introduzione e allo sviluppo di sospensioni semi-attive e attive. Lo smorzatore anti-serpeggio è generalmente posto in maniera longitudinale tra carrello e cassa del veicolo e ha lo scopo di limitare il moto di oscillazione laterale del carrello causato principalmente dalla conicità delle ruote rigidamente connesse tra loro e che può portare a instabilità dinamica per elevate velocità di marcia. Lo smorzatore anti-serpeggio idraulico passivo viene adattato tramite l’introduzione di una servo-valvola controllata elettronicamente che permette di regolare il passaggio d’olio tra le due camere dello smorzatore, andando così a modificarne la caratteristica smorzante. Un modello numerico di smorzatore anti-serpeggio semi-attivo e attivo viene introdotto in Simulink insieme alle logiche di controllo usate per regolarne la caratteristica. Il modello multibody di treno ad alta velocità è invece ottenuto tramite software Simpack. Le logiche di controllo introdotte per lo smorzatore anti-serpeggio vengono quindi testate tramite co-simulazioni numeriche evidenziando un aumento della stabilità di marcia sia in caso di soluzione semi-attiva che attiva. Le logiche di controllo per lo smorzatore semi-attivo sono state infine analizzate mediante prove di laboratorio, utilizzando un approccio Hardware-in-the-Loop. I risultati di queste prove evidenziano che il tipo di logica adottato per il controllo dello smorzatore semi-attivo assume un ruolo molto importante nel determinare la stabilità del veicolo.
Semi-active and full-active control of hunting vibration in a high-speed railway bogie
DI PASQUALI, LORENZO
2017/2018
Abstract
In the field of high-speed rail transport, the need to use suspensions with adjustable damping characteristics to increase passengers’ comfort, reduce transmission of vibrations to the carbody and thus increase driving stability, has led to the introduction and development of semi-active and full-active suspensions. The yaw damper is generally placed longitudinally between the bogie frame and the carbody and has the purpose of limiting the lateral oscillation motion of the bogie caused mainly by the conicity of the wheels rigidly connected to each other and which can lead to dynamic instability at high speeds. The passive hydraulic yaw damper is adapted through the introduction of an electronically controlled servo-valve which allows the oil to be regulated between the two damper chambers, thus adjusting the damping characteristic. A numerical model of semi-active and full-active yaw damper is introduced in Simulink together with the control logics used to regulate its characteristic. The multibody model of high-speed train is instead obtained through Simpack software. The control logics introduced for the yaw damper are then tested by numerical co-simulations showing an increase in driving stability both in the case of a semi-active and full-active solution. The control logics for the semi-active damper were finally analyzed by laboratory tests, using a Hardware-in-the-Loop approach. The results of these tests show that the type of control logic adopted for controlling the semi-active damper plays a very important role in determining the stability of the vehicle.File | Dimensione | Formato | |
---|---|---|---|
2019_04_Di_Pasquali.pdf
Open Access dal 02/04/2022
Descrizione: Testo della tesi
Dimensione
7.39 MB
Formato
Adobe PDF
|
7.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146209