Kidney stone disease is one of the most recurrent conditions of the upper urinary system that can lead to the formation of stenosis or obstructions. Double-J stents are the most common clinical method employed to restore urine drainage in the occluded urinary system. They consist of flexible tubes containing multiple side-holes allowing urine to bypass the obstruction. Complications related to stenting are still frequent with significant impact on a patient’s quality of life, efficacy of treatment, and cost of patient care. Bacterial colonization and stent encrustation have been identified as the most common causes of stent failure. However, a satisfactory understanding of the physical parameters responsible for encrustation has not been achieved yet. Only few studies have investigated the mechanisms of stent failure, with a focus on the flow dynamics in a stented urinary system and how it may affect the formation and deposition of encrusting crystals. Quantification of the flow field in-vivo is however a significant technological challenge. Computational modelling of the ureteral tract has received significant attention in recent years as an alternative investigational approach and has been combined with simplified experimental models. These previous studies have demonstrated a direct correlation between flow dynamics and encrustation over the ureteric stent surface. However, these earlier results cannot be generalised as they have been obtained with model architectures that do not faithfully replicate the complexity of a physiological urinary system. The aim of this work is therefore to develop an anatomical model of the urinary system to mimic the fluid dynamic environment in a stented and occluded ureter. The computational model of the ureter was designed based on data obtained from clinical images; these included values of ureter diameter, length, and spatial orientation. The design of the stent model replicated a commercial device provided by the Southampton General Hospital (Southampton, UK). Simulations were performed to investigate the effect of both the position and severity of obstruction. The latter was placed either in the proximal, middle and distal segment of the ureter, and caused either a 50%, 75% and 100% occlusion of the ureter lumen. Moreover, the obstruction was located either in-between side-holes or in correspondence to a side-hole. Additional stent designs were proposed to improve stent resistance against encrustation; these included a different quantity and size of side-holes. ii CFD simulations were performed on these models, by solving for incompressible NavierStokes equations in the laminar flow regime. Wall shear stress (WSS) was quantified as an indicator of stent encrustation and was determined over the external and internal stent wall and on the wall of the side-holes. Particular attention was devoted to the side-holes of the stent, since they have a critical functional role in maintaining urine drainage. The mass flow rate (MFR) through each individual side-hole was also determined. When analysing the results, side-holes with WSS ≤ 0.02 Pa and MFR ≤ 0.0001 mL/min were regarded as failed, as they are likely to suffer from greater amounts of encrustation. The percentage of non-failed side-holes was calculated initially using the commercial stent design; values ranged between 14.6% - 24.4% for the different cases investigated. In particular, a 50%, 75% and 100% obstruction resulted in a percentage of non-failed sideholes of 14.6%, 21.3% and 19.9%, respectively. The improved stent design with 41 sideholes (side-hole diameter: 0.4 mm) resulted in a significant increase in the number of nonfailed side-holes. The computational method developed in this study may further our understanding of the urodynamics of the stented ureter and may also inform the development of novel endourological stents that are more resistant to encrustation.
I calcoli renali sono una delle condizioni più ricorrenti dell'apparato urinario che può portare alla formazione di stenosi o ostruzioni. Gli stent Double-J sono il metodo clinico più comune per ripristinare il flusso di urina nel sistema urinario occluso. Essi sono costituiti da tubi flessibili contenenti più fori laterali che permettono di bypassare l'ostruzione. Le complicanze legate allo stenting sono ancora frequenti con un impatto significativo sulla qualità della vita del paziente, sull'efficacia del trattamento e sui costi della cura del paziente. La colonizzazione batterica e l'incrostazione dello stent sono state identificate come le cause più comuni di fallimento dello stent. Tuttavia, non è stata ancora raggiunta una comprensione soddisfacente dei parametri fisici responsabili dell'incrostazione. Solo pochi studi hanno esaminato i meccanismi responsabili del fallimento dello stent con particolare attenzione alla dinamica del flusso e a come questo possa influenzare la formazione e la deposizione di cristalli. Lo studio della dinamica del flusso in vivo è comunque una sfida tecnologica significativa. La modellizzazione computazionale del tratto ureterale ha ricevuto negli ultimi anni un'attenzione significativa come approccio sperimentale alternativo ed è stata combinata con modelli sperimentali semplificati. Questi studi precedenti hanno dimostrato una correlazione diretta tra la dinamica del flusso e l'incrostazione sulla superficie dello stent ureterico. Tuttavia, questi risultati precedenti non possono essere generalizzati in quanto sono stati ottenuti con architetture di modelli che non replicano fedelmente la complessità di un sistema urinario fisiologico. Lo scopo di questo lavoro è quindi quello di sviluppare un modello anatomico del sistema urinario per imitare l'ambiente fluidodinamico in un uretere stentato e occluso. Il modello computazionale dell'uretere è stato progettato sulla base di dati ottenuti da immagini cliniche; questi includevano valori di diametro, lunghezza e orientamento spaziale dell'uretere. Il design del modello di stent replicava un dispositivo commerciale fornito dal Southampton General Hospital (Southampton, UK). Sono state effettuate simulazioni computazionali per studiare l'effetto sia della posizione che della gravità dell'ostruzione. Quest'ultima è stata posizionata nel segmento prossimale, medio e distale dell'uretere e ha causato un'occlusione del lume ureterico del 50%, 75% e 100%. Inoltre, l'ostruzione era localizzata o tra i fori laterali o in corrispondenza di un foro iv laterale. Per migliorare la resistenza degli stent contro l'incrostazione, sono stati proposti ulteriori design di stent, tra cui stent con una diversa quantità e dimensione dei fori laterali. Su questi modelli sono state effettuate simulazioni computazionali risolvendo le equazioni di Navier-Stokes incomprimibili nel regime di flusso laminare. La sollecitazione da taglio della parete (WSS) è stata quantificata come indicatore di incrostazione dello stent ed è stata determinata sulla parete esterna ed interna dello stent e sulla parete dei fori laterali. Particolare attenzione è stata dedicata ai fori laterali dello stent, che hanno un ruolo funzionale fondamentale per il mantenimento del drenaggio delle urine. È stata inoltre determinata la portata massica (MFR) attraverso ogni singolo foro laterale. Nell'analisi dei risultati, i fori laterali con WSS ≤ 0,02 Pa e MFR ≤ 0.0001 mL/min sono stati considerati falliti, in quanto è probabile che soffrano di maggiori quantità di incrostazioni. La percentuale di fori laterali non falliti è stata calcolata inizialmente utilizzando il design dello stent commerciale; i valori variavano tra il 14.6% - 24.4% per i diversi casi esaminati. In particolare, un'ostruzione del 50%, 75% e 100% ha portato ad una percentuale di fori laterali non falliti rispettivamente del 14.6%, 21.3% e 19.9%. Il miglioramento del design dello stent con 41 fori laterali (diametro del foro: 0.4 mm) ha portato ad un significativo aumento del numero di fori laterali non falliti. Il metodo computazionale sviluppato in questo studio può migliorare la comprensione della fluidodinamica dell'uretere stentato e occluso e condurre allo sviluppo di nuovi stent ureterici più resistenti alle incrostazioni.
In-silico study of flow dynamics in a ureteric stent following obstruction of the ureter
TEODORO, FEDERICA
2017/2018
Abstract
Kidney stone disease is one of the most recurrent conditions of the upper urinary system that can lead to the formation of stenosis or obstructions. Double-J stents are the most common clinical method employed to restore urine drainage in the occluded urinary system. They consist of flexible tubes containing multiple side-holes allowing urine to bypass the obstruction. Complications related to stenting are still frequent with significant impact on a patient’s quality of life, efficacy of treatment, and cost of patient care. Bacterial colonization and stent encrustation have been identified as the most common causes of stent failure. However, a satisfactory understanding of the physical parameters responsible for encrustation has not been achieved yet. Only few studies have investigated the mechanisms of stent failure, with a focus on the flow dynamics in a stented urinary system and how it may affect the formation and deposition of encrusting crystals. Quantification of the flow field in-vivo is however a significant technological challenge. Computational modelling of the ureteral tract has received significant attention in recent years as an alternative investigational approach and has been combined with simplified experimental models. These previous studies have demonstrated a direct correlation between flow dynamics and encrustation over the ureteric stent surface. However, these earlier results cannot be generalised as they have been obtained with model architectures that do not faithfully replicate the complexity of a physiological urinary system. The aim of this work is therefore to develop an anatomical model of the urinary system to mimic the fluid dynamic environment in a stented and occluded ureter. The computational model of the ureter was designed based on data obtained from clinical images; these included values of ureter diameter, length, and spatial orientation. The design of the stent model replicated a commercial device provided by the Southampton General Hospital (Southampton, UK). Simulations were performed to investigate the effect of both the position and severity of obstruction. The latter was placed either in the proximal, middle and distal segment of the ureter, and caused either a 50%, 75% and 100% occlusion of the ureter lumen. Moreover, the obstruction was located either in-between side-holes or in correspondence to a side-hole. Additional stent designs were proposed to improve stent resistance against encrustation; these included a different quantity and size of side-holes. ii CFD simulations were performed on these models, by solving for incompressible NavierStokes equations in the laminar flow regime. Wall shear stress (WSS) was quantified as an indicator of stent encrustation and was determined over the external and internal stent wall and on the wall of the side-holes. Particular attention was devoted to the side-holes of the stent, since they have a critical functional role in maintaining urine drainage. The mass flow rate (MFR) through each individual side-hole was also determined. When analysing the results, side-holes with WSS ≤ 0.02 Pa and MFR ≤ 0.0001 mL/min were regarded as failed, as they are likely to suffer from greater amounts of encrustation. The percentage of non-failed side-holes was calculated initially using the commercial stent design; values ranged between 14.6% - 24.4% for the different cases investigated. In particular, a 50%, 75% and 100% obstruction resulted in a percentage of non-failed sideholes of 14.6%, 21.3% and 19.9%, respectively. The improved stent design with 41 sideholes (side-hole diameter: 0.4 mm) resulted in a significant increase in the number of nonfailed side-holes. The computational method developed in this study may further our understanding of the urodynamics of the stented ureter and may also inform the development of novel endourological stents that are more resistant to encrustation.File | Dimensione | Formato | |
---|---|---|---|
Federica Teodoro_ Master thesis.pdf
non accessibile
Descrizione: Master Thesis Federica Teodoro
Dimensione
7.03 MB
Formato
Adobe PDF
|
7.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146242