Large scale diffusion of vehicles based on PEM fuel cell technology is slowed down by some criticisms linked to the ion-exchange polymeric membrane. In this research the blending of different side-chain length and equivalent weight (EW) perfluorosulfonic acids (PFSA) is proposed to enhance the mechanical stability keeping high proton conductivity in low thickness membranes, typically used in the automotive sector. The aim is to produce them through melt blowing in their acid form, a patented process that demonstrated to tear down production cost generating high troughput. The work has been performed at Solvay Specialty Polymers’ R&D division in Bollate (Milan, Italy) and at the NRC’s Automotive and Surface Transport Research Centre in Boucherville (Quebec, Canada). It is divided in four sections. Initially (1), two types of blend are analysed to assess the impact of the interactions between the polymers: one composed of different-EW short-side chain (SSC) ionomers and another one composed of SSC and long-side chain (LSC) ionomers. The physico-chemical and electrochemical characteristics are measured on solution cast membranes. Then (2), the analysis is limited to only SSC-LSC blends in a narrower range of composition. The characterisation of these samples produced through melt extrusion in acidic form allows to evaluate the optimum composition for the following blowing extrusion. In the third part (3) the membrane obtained through melt blowing in acidic form is characterised and benchmarked against other samples made through different manufacturing and ionomers ratio. Lastly (4) the three processes are compared to evaluate their influence on the material. This research suggests that the blending of different polymers guarantees a promising combination between mechanical resistance and proton conduction, but strongly influenced by the composition. Furthermore, it was demonstrated that the melt blowing confers the best physico-chemical properties that could result in a long durability, but it cannot be applied to SSC-SSC blends. Nevertheless, when the SSC-LSC blend is tested in a fuel cell, it does not exhibit the substantial conductivity shown in ex-situ tests. The performances of the SSC-SSC blend, instead, are confirmed also in the cell tests. This might be due to the influence of the system compression on membrane’s water uptake and thus on its ion-transport resistance. This thesis work shows the potential of ionomers blend but underlines the need of their improvement and of deeper analysis on the morphological interactions and on the MEA and fuel cell compression impact on the membrane.
La diffusione su larga scala di veicoli basati su una tecnologia PEM fuel cell è rallentata da alcune criticità legate alla membrana polimerica a scambio ionico. In questa ricerca si propone il miscelamento di perfluoropolimeri (PFSA) con diverse lunghezze di catena laterale e pesi equivalenti (EW) per aumentare la stabilità meccanica mantenendo un’alta conducibilità protonica in membrane a basso spessore. Si vuole inoltre produrre questi blend tramite melt blowing in forma acida, processo brevettato che si è dimostrato abbattere i costi di produzioni e garantire alti volumi di produzione. Il lavoro è stato svolto nel centro ricerca di Solvay Specialty Polymers di Bollate (Milano) ed al Automotive and Surface Transport Research Centre del National Research Council di Boucherville (Quebec, Canada). È suddiviso in quattro parti. Inizialmente (1) si analizza l’impatto delle interazioni morfologiche nel miscelamento tra ionomeri SSC a diversi EW e tra uno ionomero a catena corta (SSC) ed uno a catena lunga (LSC). Le proprietà fisico-chimiche e elettrochimiche vengono misurate su membrane prodotte tramite solution casting. Successivamente (2) l’analisi si restringe ai soli blend SSC-LSC in un range di composizioni più ristretto. La caratterizzazione di questi campioni prodotti attraverso melt extrusion in forma acida permette di valutare la composizione ottimale per la successiva estrusione in melt blowing. Nella terza parte (3) si caratterizza una membrana fabbricata tramite melt blowing in forma acida e confrontata con altri campioni derivanti da differenti rapporti di ionomeri e metodi produttivi. Infine (4) si confrontano i tre metodi produttivi per valutare l’influenza sulle proprietà del materiale. Questo lavoro di ricerca suggerisce che il miscelamento dei diversi polimeri considerati garantisce una promettente combinazione tra stabilità meccanica e conducibilità protonica, ma fortemente condizionata dalla composizione. Inoltre il melt blowing si è dimostrato in grado di fornire le migliori caratteristiche fisico-chimiche alla membrana che potrebbero portare a una durability estesa, ma non può essere applicato ai blend SSC-SSC. Tuttavia, quando il blend SSC-LSC viene testato in una fuel cell non mostra l’elevata conducibilità riscontrata nei test ex-situ. Questo potrebbe essere dovuto all’influenza della compressione del sistema sul water uptake della membrana, e quindi sulla sua resistenza al trasporto di ioni. Il blend SSC-SSC, invece, conferma avere delle prestazioni migliori dei benchmark anche nelle prove in cella. Da questa tesi emerge la potenzialità del miscelamento di ionomeri, ma anche la necessità di un miglioramento degli stessi tramite delle indagini più approfondite sulle interazioni morfologiche, sulla durability e sull’impatto che l’assemblaggio e la compressione del MEA e della fuel cell hanno sulla membrana.
Optimization of functional polymer blends for ion-exchange membranes used in automotive PEM fuel cell
FAVRETTO, EFREM
2017/2018
Abstract
Large scale diffusion of vehicles based on PEM fuel cell technology is slowed down by some criticisms linked to the ion-exchange polymeric membrane. In this research the blending of different side-chain length and equivalent weight (EW) perfluorosulfonic acids (PFSA) is proposed to enhance the mechanical stability keeping high proton conductivity in low thickness membranes, typically used in the automotive sector. The aim is to produce them through melt blowing in their acid form, a patented process that demonstrated to tear down production cost generating high troughput. The work has been performed at Solvay Specialty Polymers’ R&D division in Bollate (Milan, Italy) and at the NRC’s Automotive and Surface Transport Research Centre in Boucherville (Quebec, Canada). It is divided in four sections. Initially (1), two types of blend are analysed to assess the impact of the interactions between the polymers: one composed of different-EW short-side chain (SSC) ionomers and another one composed of SSC and long-side chain (LSC) ionomers. The physico-chemical and electrochemical characteristics are measured on solution cast membranes. Then (2), the analysis is limited to only SSC-LSC blends in a narrower range of composition. The characterisation of these samples produced through melt extrusion in acidic form allows to evaluate the optimum composition for the following blowing extrusion. In the third part (3) the membrane obtained through melt blowing in acidic form is characterised and benchmarked against other samples made through different manufacturing and ionomers ratio. Lastly (4) the three processes are compared to evaluate their influence on the material. This research suggests that the blending of different polymers guarantees a promising combination between mechanical resistance and proton conduction, but strongly influenced by the composition. Furthermore, it was demonstrated that the melt blowing confers the best physico-chemical properties that could result in a long durability, but it cannot be applied to SSC-SSC blends. Nevertheless, when the SSC-LSC blend is tested in a fuel cell, it does not exhibit the substantial conductivity shown in ex-situ tests. The performances of the SSC-SSC blend, instead, are confirmed also in the cell tests. This might be due to the influence of the system compression on membrane’s water uptake and thus on its ion-transport resistance. This thesis work shows the potential of ionomers blend but underlines the need of their improvement and of deeper analysis on the morphological interactions and on the MEA and fuel cell compression impact on the membrane.| File | Dimensione | Formato | |
|---|---|---|---|
|
2019_04_Favretto.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
22.51 MB
Formato
Adobe PDF
|
22.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146348