The present work is carried out in the framework of the European FlexiCaL project which has as main goal to develop new advanced power plants with CCS based on highly flexible CaL systems. The Calcium Looping (CaL) concept is based on the reversible carbonation reaction (CaO + CO2 -> CaCO3) to separate carbon dioxide from flue gas. The formed CaCO3 is then sent to a second reactor, calciner, where oxy-combustion of coal is carried out for supplying the energy needed for CaCO3 calcination. Some important modifications have been applied to the existing carbonator model. Selective gas solid-separators (cyclones) and a recirculation rate have been added to the reactor, which allows to study more accurately the system performances. The validation of carbonator against experimental data obtained in the pilot plant in La Pereda has been discussed. Moreover, a calciner model has been integrated into the system. Simulations at different load scenarios have been studied, analysing performance, behaviour and flexibility of the system. The results obtained in this work confirm the great potential of CaL process as a practical high-CO2 capture technology for separation and sequestration of carbon dioxide, since the system performances, in particular the efficiency of CO2 capture, increase if it works at partial load conditions. This is a significant result since there may be periods where fossil-fired power plants will be required to operate flexibly, to respond to the intermittency of the renewable energy sources. Finally, Carbon Capture and Storage via the Calcium Looping cycle with biomass combustion in frame of retrofitting configuration has been analysed. This process seems to be promising, since results show that biomass combustion and Calcium Looping for CO2 capture are compatible. This novel layout has the potential to reduce the number of unit operations to save costs, and to curb emissions ‘removing’ CO2 from the atmosphere. In other terms, if the CO2 released from the combustion is then captured and stored by a CCS technology, one can achieve the net removal of CO2 from the atmosphere, leading to processes with negative emissions of CO2.
Il presente lavoro si colloca nell’ambito del progetto europeo FlexiCaL, il cui principale obiettivo è lo sviluppo di nuovi impianti per la produzione di potenza basati sulla tecnologia Calcium Looping (CCS). Essa sfrutta la reazione reversibile di carbonatazione (CaO + CO2 -> CaCO3) per separare l’anidride carbonica da una corrente di gas combusti. Il carbonato di calcio originato dal processo è inviato in un secondo reattore, il calcinatore, nel quale avviene la calcinazione del CaCO3, sostenuta dall’energia introdotta tramite l’ossi-combustione di carbone. Al modello del carbonatore di riferimento sono state apportate alcune modifiche, tra cui l’inserimento di cicloni selettivi e di un sistema di ricircolo al carbonatore. L’introduzione di componenti con funzionamento reale permette di stabilire più accuratamente le prestazioni del sistema. Viene quindi fatta la validazione di dati sperimentali forniti dall’impianto pilota La Pereda. Infine, viene integrato all’intero sistema di Calcium Looping il modello del calcinatore. In questo lavoro viene studiato il funzionamento del sistema ai carichi parziali, le cui performance, in particolare l’efficienza di cattura dell’anidride carbonica, risultano migliorare rispetto al caso di design. Ciò conferma il potenziale di questa tecnologia per la cattura e lo stoccaggio della CO2. Si tratta di un risultato importante dal momento che gli impianti alimentati a combustibile fossile spesso e volentieri sono chiamati a funzionare a carico minore di quello nominale per far fronte alle variazioni della domanda di energia. L’intero sistema Calcium Looping è stato infine studiato nella configurazione di retrofitting, in cui il carbonatore è alimentato a biomassa anziché gas combusti. I processi di combustione di biomassa e Calcium Looping risultano essere compatibili, rendendo questa tecnologia promettente. Essa ha il vantaggio di ridurre i costi operativi e allo stesso tempo abbattere le emissioni. La CO2 rilasciata dalla combustione di biomassa è quindi catturata dando vita a un processo a emissioni negative.
Design and off-design modelling of calcium looping process for CO2 capture from power plants
RINOLDI, MARTA
2017/2018
Abstract
The present work is carried out in the framework of the European FlexiCaL project which has as main goal to develop new advanced power plants with CCS based on highly flexible CaL systems. The Calcium Looping (CaL) concept is based on the reversible carbonation reaction (CaO + CO2 -> CaCO3) to separate carbon dioxide from flue gas. The formed CaCO3 is then sent to a second reactor, calciner, where oxy-combustion of coal is carried out for supplying the energy needed for CaCO3 calcination. Some important modifications have been applied to the existing carbonator model. Selective gas solid-separators (cyclones) and a recirculation rate have been added to the reactor, which allows to study more accurately the system performances. The validation of carbonator against experimental data obtained in the pilot plant in La Pereda has been discussed. Moreover, a calciner model has been integrated into the system. Simulations at different load scenarios have been studied, analysing performance, behaviour and flexibility of the system. The results obtained in this work confirm the great potential of CaL process as a practical high-CO2 capture technology for separation and sequestration of carbon dioxide, since the system performances, in particular the efficiency of CO2 capture, increase if it works at partial load conditions. This is a significant result since there may be periods where fossil-fired power plants will be required to operate flexibly, to respond to the intermittency of the renewable energy sources. Finally, Carbon Capture and Storage via the Calcium Looping cycle with biomass combustion in frame of retrofitting configuration has been analysed. This process seems to be promising, since results show that biomass combustion and Calcium Looping for CO2 capture are compatible. This novel layout has the potential to reduce the number of unit operations to save costs, and to curb emissions ‘removing’ CO2 from the atmosphere. In other terms, if the CO2 released from the combustion is then captured and stored by a CCS technology, one can achieve the net removal of CO2 from the atmosphere, leading to processes with negative emissions of CO2.File | Dimensione | Formato | |
---|---|---|---|
2019_04_Rinoldi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
3.11 MB
Formato
Adobe PDF
|
3.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146357