Vanadium flow battery (VFB) technology promise to support the spread of electrochemical energy storage for stationary applications and allow a higher penetration of renewables in the electric grid. VFB is characterized by fast response time, safe operation, resistance to cross contamination and can decouple energy capacity and power rating sizing. However, a low power density is currently hindering their market competitiveness. Understanding the main causes of loss and reacting to them with the design of optimized devices can unlock the full potential of VFB. Electrochemical impedance spectroscopy (EIS) is the most common in situ characterization technique for the diagnosis of performance losses. However, there is lack of models based on physics, which can guarantee a quantitative interpretation of experimental spectra for VFB. Oppositely, literature is abundant in physics-based impedance models for proton exchange membrane fuel cells (PEMFC). In this work the methods and assumptions used for describing PEMFC are used as a starting point to derive a valid analytical model for the impedance of a VFB electrode. First, an analytical physics-based pseudo 2D model of a HT-PEMFC impedance incorporating the main transport phenomena is developed. Subsequently, with a similar mathematical approach an analytical physics-based pseudo 2D model of a VFB electrode impedance is developed. The two models are validated against experimental impedance spectra. The VFB model considers losses due to Butler Volmer kinetics, diffusion in porous electrode, pore scale mass transport and reactants depletion along the channel. Additionally, an ohmic loss is given by the membrane. A simple fitting procedure to be applied for the two models is given. Moreover, sensitivity analysis is performed to study the effect of different parameters and investigate differences between VFB and PEMFC. Finally, analytical expressions for the impedances related to single causes of losses are derived and their variation is analysed locally and at various current densities.
La technologia delle batterie al flusso di vanadio promette di supportare il diffondersi dell’accumulo elettrochimico di energia per applicazioni stazionarie e permettere una piu’ alta quota parte di energia da rinnovabili nella rete elettrica. Le batterie al flusso di vanadio sono caratterizzate da brevi tempi di risposta, operazione in sicurezza, resistenza a contaminazione incrociata e separano il dimensionamento di capacita’ di energia e potenza. Una bassa densita’ di potenza sta tuttavia ostacolando la loro competitivita’ di mercato. Capire le maggiori cause di perdita e reagirvi con la creazione di dispositivi ottimizzati puo’ sbloccare tutto il potenziale di questa tecnologia. La spettroscopia di impedenza elettrochimica e’ la piu commune tecnica in situ per la diagnosi delle cause di perdita. Tuttavia, c’e’ carenza di modelli di impedenza basati sulla fisica per la sua interpretazione su batterie al flusso di vanadio. La letteratura scientifica abbonda invece di simili modelli per le celle a combustibile con membrana a scambio protonico. In questo lavoro i metodi e le assunzioni usate su quest’ultima tecnologia sono usati come punto di partenza per derivare un modello analitico quasi 2D per l’impedenza di un elettrodo in una batteria al flusso di vanadio basato sulla fisica. Per iniziare, E’ stato sviluppato un modello analitico quasi 2D per l’impedenza di una celle a combustibile con membrana a scambio protonico ad alta temperatura che incorpora i maggiori fenomeni di trasporto. Con un approccio matematico simile e’ stato in seguito sviluppato un modello analitico quasi 2D per l’impedenza di un elettrodo in una batteria al flusso di vanadio. I due modelli sono stati validati con spettri di impedenza sperimentali. Il modello per una batteria al flusso di vanadio considera perdite a causa di cinetica (Butler-Volmer), diffusione nell’elettrodo, transporto di massa nei pori e consumo di reagenti lungo il canale oltre che una resistenza ohmica dovuta alla membrana. Una prodecura per l’allineamento dei due modelli e’ descritta. Un analisi di sensitivita’ per studiare l’effetto di diversi parametri e’ compiuta e le differenze tra le due tecnologie sono esaminate. Le espressioni analitiche per le impedenze dovute alle singole cause di perdita sono state derivate e la loro variazione studiata localmente ed al variare della densita’ di corrente.
Development and validation of a pseudo 2D analytical model for vanadium flow battery impedance with a PEM fuel cell based approach to modelling transport phenomena
VIVONA, DANIELE
2017/2018
Abstract
Vanadium flow battery (VFB) technology promise to support the spread of electrochemical energy storage for stationary applications and allow a higher penetration of renewables in the electric grid. VFB is characterized by fast response time, safe operation, resistance to cross contamination and can decouple energy capacity and power rating sizing. However, a low power density is currently hindering their market competitiveness. Understanding the main causes of loss and reacting to them with the design of optimized devices can unlock the full potential of VFB. Electrochemical impedance spectroscopy (EIS) is the most common in situ characterization technique for the diagnosis of performance losses. However, there is lack of models based on physics, which can guarantee a quantitative interpretation of experimental spectra for VFB. Oppositely, literature is abundant in physics-based impedance models for proton exchange membrane fuel cells (PEMFC). In this work the methods and assumptions used for describing PEMFC are used as a starting point to derive a valid analytical model for the impedance of a VFB electrode. First, an analytical physics-based pseudo 2D model of a HT-PEMFC impedance incorporating the main transport phenomena is developed. Subsequently, with a similar mathematical approach an analytical physics-based pseudo 2D model of a VFB electrode impedance is developed. The two models are validated against experimental impedance spectra. The VFB model considers losses due to Butler Volmer kinetics, diffusion in porous electrode, pore scale mass transport and reactants depletion along the channel. Additionally, an ohmic loss is given by the membrane. A simple fitting procedure to be applied for the two models is given. Moreover, sensitivity analysis is performed to study the effect of different parameters and investigate differences between VFB and PEMFC. Finally, analytical expressions for the impedances related to single causes of losses are derived and their variation is analysed locally and at various current densities.File | Dimensione | Formato | |
---|---|---|---|
2019_04_Vivona.pdf
solo utenti autorizzati dal 05/04/2022
Dimensione
4.48 MB
Formato
Adobe PDF
|
4.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146411