Recently, Additive Manufacturing (AM) has attracted great interests in many fields, such as art, medical, educational, automotive, and aerospace industries. It is capable of building complex parts directly from Computer Aided Design (CAD) models by accumulating plastic, ceramic or metal materials layer by layer. Compared to conventional manufacturing methods, AM can save time and material in prototyping and producing complex shapes. For this reason, it has expanded rapidly since mid-1980s and various AM processes have been invented and promoted for the industrial applications. Among them, MIM technology is raising increasing importance thanks to its capability of printing metal parts in an affordable way with respect to the laser one. Its success is testified by the interest of many companies such as HP® and Desktop Metal™ in this technology and the growing number of new printers available on the market. Printing green steel has several advantages since the process is performed at very low temperatures and the printed objects can be machined very easily before debinding and sintering. The final part is expected to show low porosity and high mechanical properties. Hence the interest in designing, building and controlling a machine based on MIM technique and consequently in investing in EFeSTO project. Alongside the importance of the technological process, the research done to optimize the toolpath generation has not less significance. It aims at obtaining high quality pieces in terms of tolerances, surface smoothness and mechanical properties, optimizing the printing time and reducing the postprinting machining. For this reason, the first part of this work is devoted to review the state of art concerning the foremost outcomes about the toolpath generation strategies. The classification of the exploitable methods is strictly hardware-based according to the number of available axes and the type of degree of freedom (dof) they are providing. The sparkling interest surrounding the research on the five axes machines elect them as the most promising ones thanks to the further capabilities made available by the curved layers and the multidirectional deposition. These are additional and absolutely innovative with respect to the adaptive layer height and the building direction optimization possible with the conventional three axes printers. In this frame, EFeSTO is a five axes machine able to keep up with the latest scientific outcomes from both a technological and a kinematic point of view. Whatever the method and the software used to carried out the nozzle toolpath, it is just the first step to get the desired printed object. Indeed, the software ignores the problematics related to the motion of the robot and a data processing is necessary to verify the compliance of the prescribed motion with the kinematic, dynamic and technological limitations peculiar of this machine. The output of this phase is an ideal motion law which has to be implemented on the hardware. The selection of the control program necessary to reproduce the designed motion law hardware-side involves a large experimental phase aimed at finding the best control technique among the ones made available by Mitsubishi’s controller. Indeed, only knowing the limitations of the specific control strategy, it is possible to cast a correct procedure for the motion law offline computation which is fully able to exploit the capabilities of both the hardware and the controller. Towards this end, different control modes are attempted looking for the one providing the following features: fully modelled behaviour, reliable tracking of the input signal, perfect axes synchronism and thrifty memory management. Keeping up with the state of art is not only having an excellent toolpath generator and a completely piloted motion, but also having a top-class hardware capable of translating these qualities into the desired 3D shape. For this reason, the last part of this work involves a new mechanical project for some EFeSTO’s components to obliterate the design, machining and assembly issues which affect the overall printing quality. Eventually, a calibration procedure is presented and integrated in the offline computation in case the robot still lacks accuracy after the parts realization.
Recentemente, l’Additive Manufacturing (AM) ha attratto grandi interessi in molti campi, come l'arte, le industrie mediche, automobilistiche e aerospaziali. È in grado di costruire parti complesse direttamente dai modelli CAD (Computer Aided Design) depositando plastica, ceramica o metallo strato per strato. Rispetto ai metodi di produzione convenzionali, l’AM può far risparmiare tempo e materiale nella prototipazione e produzione di forme complesse. Per questo motivo, si è espanso rapidamente a partire dagli anni 80 e da allora svariati processi di AM sono stati inventati e promossi in diversi settori industriali. Tra questi, la tecnologia MIM sta acquisendo sempre più importanza grazie alla sua capacità di stampare parti metalliche in modo economico rispetto al laser. Il suo successo è testimoniato dall'interesse di molte aziende come HP® e Desktop Metal ™ in questa tecnologia e dal crescente numero di nuove stampanti disponibili sul mercato. La stampa dell'acciaio al verde ha diversi vantaggi in quanto il processo viene eseguito a temperature molto basse e gli oggetti stampati possono essere lavorati molto facilmente prima del debinding e della sinterizzazione. L’oggetto finale è caratterizzato da bassa porosità e notevoli proprietà meccaniche. Da qui l'interesse per la progettazione, la costruzione e il controllo di una macchina basata sulla tecnica MIM e quindi il senso di investire nel progetto EFeSTO. Accanto all'importanza del processo tecnologico, la ricerca fatta per ottimizzare la generazione delle traiettorie dell’ugello non ha meno rilevanza. Il suo studio mira ad ottenere pezzi di alta qualità in termini di tolleranze, levigatezza della superficie e proprietà meccaniche, ottimizzando i tempi di stampa e riducendo il post-processing. Per questo motivo, la prima parte di questo lavoro è dedicata alla revisione dello stato dell'arte riguardante le tecniche di slicing. La classificazione seguita è orientata al tipo di macchina ed è quindi basata sul numero di assi disponibili e il tipo di grado di libertà (dof) che essi fornendo. L'effervescente interesse che circonda la ricerca sulle macchine a cinque assi le elegge come le più promettenti grazie alle straordinarie capacità legate allo slicing multidirezionale e ai layer curvi. Questi sono assolutamente innovativi rispetto a tutto quanto è già possibile con le convenzionali stampanti a tre assi. In questo contesto, EFeSTO è una macchina a cinque assi basata sulla tecnologia MIM in grado di tenere il passo con gli ultimi risultati scientifici sia dal punto di vista tecnologico che cinematico. Qualunque siano il metodo e il software utilizzati per ricavare il percorso dell’ugello, essi sono solo il primo passo per ottenere l'oggetto desiderato. Infatti, il software ignora le problematiche relative al movimento del robot e un pre-process dei dati è necessario per verificare la conformità del movimento prescritto con le limitazioni cinematiche, dinamiche e tecnologiche peculiari di questa macchina. L'output di questa fase è una legge di moto ideale che deve poi essere implementata sull'hardware. La selezione della migliore modalità di controllo necessaria per ricalcare la legge di moto desiderata comporta una vasta fase sperimentale volta a trovare la migliore tecnica di controllo tra quelle messe a disposizione dal controller Mitsubishi. Infatti, solo conoscendo i limiti della specifica strategia di controllo è possibile eseguire una corretta procedura per il calcolo di una legge di moto che sia completamente in grado di sfruttare le capacità sia dell'hardware che del controllore. A questo scopo, la modalità di controllo da utilizzare deve possedere le seguenti caratteristiche: comportamento completamente modellabile, tracciamento affidabile del segnale di ingresso, sincronismo perfetto degli assi e gestione efficiente della memoria. Tenere il passo con lo stato dell'arte non è solo avere un eccellente generatore di traiettorie e pilotare completamente il moto della macchina, ma comporta anche un hardware di alto livello in grado di tradurre queste qualità nella forma 3D desiderata. Per questo motivo, l'ultima parte di questo lavoro prevede un nuovo progetto meccanico per alcuni componenti di EFeSTO volta ad eliminare i problemi di progettazione, lavorazione e assemblaggio che maggiormente incidono sulla qualità di stampa. Nel caso in cui il robot manchi ancora di precisione dopo la realizzazione delle parti, una procedura di calibrazione viene infine presentata e integrata nel calcolo delle traiettorie.
Trajectory planning for an innovative 3D printer based on MIM technique
CAVALLINI, ANDREA
2017/2018
Abstract
Recently, Additive Manufacturing (AM) has attracted great interests in many fields, such as art, medical, educational, automotive, and aerospace industries. It is capable of building complex parts directly from Computer Aided Design (CAD) models by accumulating plastic, ceramic or metal materials layer by layer. Compared to conventional manufacturing methods, AM can save time and material in prototyping and producing complex shapes. For this reason, it has expanded rapidly since mid-1980s and various AM processes have been invented and promoted for the industrial applications. Among them, MIM technology is raising increasing importance thanks to its capability of printing metal parts in an affordable way with respect to the laser one. Its success is testified by the interest of many companies such as HP® and Desktop Metal™ in this technology and the growing number of new printers available on the market. Printing green steel has several advantages since the process is performed at very low temperatures and the printed objects can be machined very easily before debinding and sintering. The final part is expected to show low porosity and high mechanical properties. Hence the interest in designing, building and controlling a machine based on MIM technique and consequently in investing in EFeSTO project. Alongside the importance of the technological process, the research done to optimize the toolpath generation has not less significance. It aims at obtaining high quality pieces in terms of tolerances, surface smoothness and mechanical properties, optimizing the printing time and reducing the postprinting machining. For this reason, the first part of this work is devoted to review the state of art concerning the foremost outcomes about the toolpath generation strategies. The classification of the exploitable methods is strictly hardware-based according to the number of available axes and the type of degree of freedom (dof) they are providing. The sparkling interest surrounding the research on the five axes machines elect them as the most promising ones thanks to the further capabilities made available by the curved layers and the multidirectional deposition. These are additional and absolutely innovative with respect to the adaptive layer height and the building direction optimization possible with the conventional three axes printers. In this frame, EFeSTO is a five axes machine able to keep up with the latest scientific outcomes from both a technological and a kinematic point of view. Whatever the method and the software used to carried out the nozzle toolpath, it is just the first step to get the desired printed object. Indeed, the software ignores the problematics related to the motion of the robot and a data processing is necessary to verify the compliance of the prescribed motion with the kinematic, dynamic and technological limitations peculiar of this machine. The output of this phase is an ideal motion law which has to be implemented on the hardware. The selection of the control program necessary to reproduce the designed motion law hardware-side involves a large experimental phase aimed at finding the best control technique among the ones made available by Mitsubishi’s controller. Indeed, only knowing the limitations of the specific control strategy, it is possible to cast a correct procedure for the motion law offline computation which is fully able to exploit the capabilities of both the hardware and the controller. Towards this end, different control modes are attempted looking for the one providing the following features: fully modelled behaviour, reliable tracking of the input signal, perfect axes synchronism and thrifty memory management. Keeping up with the state of art is not only having an excellent toolpath generator and a completely piloted motion, but also having a top-class hardware capable of translating these qualities into the desired 3D shape. For this reason, the last part of this work involves a new mechanical project for some EFeSTO’s components to obliterate the design, machining and assembly issues which affect the overall printing quality. Eventually, a calibration procedure is presented and integrated in the offline computation in case the robot still lacks accuracy after the parts realization.File | Dimensione | Formato | |
---|---|---|---|
CAVALLINI874376.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
9.7 MB
Formato
Adobe PDF
|
9.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146580