In the ballistic field, the research of solutions providing lightness and cost effectiveness for protections is of paramount importance. Thus, the use of multilayer ceramic-composite protections is considered as an effective solution to satisfy these requirements. On one hand, the ceramics is adopted as facing material of the protection because of its higher hardness and lower density compared to metals, which leads to an effective erosion and, in some cases, to the breakage of the projectiles. Nevertheless, since ceramic materials are extremely brittle and tend to shatter after impact, a backing material is needed as to limit the dispersion of fragments. The use of composite materials for the backing is favored because of their lightness and because of the fact that, confining the ceramic fragments, they provide further erosion capabilities to the protection and, parallelly, of the ability to accommodate large strains to stop the projectile. The need to reduce the time, cost and uncertainties of experiments associated to the development and design of new ceramic-composite protections, has brought to the development of tools able to foresee the interaction between projectile and target. Such tools are based on both analytical and numerical models. For the scope of the present thesis work, two experimental campaigns were carried out as to infer, at first, the behavior of the single ceramic tiles and, secondly, the behavior of ceramic-composite targets. The analytical model is based on the mechanical and energy considerations. The modified Bernoulli equation has been implemented to simulate the interaction between the projectile and the ceramic tile. The energy formulation has been adopted to describe the deformation of the composite backing plate and is based on the wave propagation theory to evaluate every energy absorption mechanism. The numerical model, developed within the LS-DYNA environment, is based on a fully-Lagrangian finite-element analysis. This approach led to achieve results in good agreement with the experimental data, significantly reducing the computational time with respect to finer numerical techniques such as the Lagrangian analysis with SPH conversion. The analytical and numerical models have been eventually validated and compared with data obtained through the mentioned experimental campaigns and data available in literature. For both modelling approaches, good agreement has been obtained in terms of residual velocity of the projectile.
In ambito balistico, la ricerca di leggerezza ed economicità per protezioni balistiche è di fondamentale importanza. L’utilizzo di protezioni multistrato ceramico-composito è quindi considerato come soluzione efficace a soddisfare questi requisiti. L’idea di utilizzare materiali ceramici come primo materiale resistente durante la fase di impatto nasce soprattutto dal fatto che la ceramica risulta essere un materiale intrinsecamente più duro e leggero rispetto ai metalli, riuscendo ad erodere e, in taluni casi, rompere il proiettile nei primi istanti dall’impatto. Nonostante ciò, i materiali ceramici sono estremamente fragili e tendono a frammentarsi dopo l’impatto. Da qui la necessità di porre un secondo strato a supporto della lastra ceramica in modo tale da confinare la dispersione dei frammenti. L’utilizzo di materiali compositi come materiali di supporto è favorito dal fatto che questi, confinando i frammenti ceramici, forniscono un ulteriore potere erosivo alla protezione e, parallelamente, alla possibilità di deformarsi assorbendo i frammenti di ceramica e proiettile. Il tutto unito ad una densità estremamente inferiore rispetto ai metalli. La necessità di ridurre tempi, costi ed incertezze, associati alla realizzazione di campagne sperimentali per lo sviluppo e progettazione di nuove protezioni, ha portato allo sviluppo di strumenti atti alla predizione dell’interazione fra proiettile e bersaglio. Tali strumenti sono basati su modelli sia di tipo analitico che numerico. Per il presente lavoro di tesi, due campagne sperimentali sono state condotte al fine di investigare il comportamento di bersagli ceramici monostrato, in primis, e successivamente bersagli multistrato ceramico-compositi. Il modello analitico proposto si basa su considerazioni sia meccaniche che energetiche. Esso nasce dall’implementazione dell’equazione modificata di Bernuolli per simulare l’interazione fra proiettile e piastrella ceramica. La formulazione energetica viene invece adottata per descrivere la deformazione del supporto composito e si basa sulla teoria della propagazione delle onde per quantificare l’energia assorbita da ogni singolo meccanismo. Il modello numerico, sviluppato tramite il software LS-DYNA, è basato su un modello ad elementi finiti lagrangiano. Con questo tipo di approccio si sono ottenuti risultati in linea con i test sperimentali riuscendo a ridurre drasticamente i tempi computazionali rispetto a modelli ritenuti più efficaci ma più onerosi in termini computazionali, quali quelli basati sulla modellazione ad elementi finiti con conversione degli elementi in elementi SPH. I modelli analitici e numerici sono stati infine validati e comparati con risultati sperimentali ottenuti da letteratura e con i risultati sperimentali ottenuti dalle campagne sperimentali sopra citate. In entrambi i modelli si è osservato un buon accordo fra simulazioni e risultati sperimentali in termini di velocità residua del proiettile.
Predictive modelling approaches for ballistic impact on ceramic/composite targets
GREGORI, DAVIDE
2017/2018
Abstract
In the ballistic field, the research of solutions providing lightness and cost effectiveness for protections is of paramount importance. Thus, the use of multilayer ceramic-composite protections is considered as an effective solution to satisfy these requirements. On one hand, the ceramics is adopted as facing material of the protection because of its higher hardness and lower density compared to metals, which leads to an effective erosion and, in some cases, to the breakage of the projectiles. Nevertheless, since ceramic materials are extremely brittle and tend to shatter after impact, a backing material is needed as to limit the dispersion of fragments. The use of composite materials for the backing is favored because of their lightness and because of the fact that, confining the ceramic fragments, they provide further erosion capabilities to the protection and, parallelly, of the ability to accommodate large strains to stop the projectile. The need to reduce the time, cost and uncertainties of experiments associated to the development and design of new ceramic-composite protections, has brought to the development of tools able to foresee the interaction between projectile and target. Such tools are based on both analytical and numerical models. For the scope of the present thesis work, two experimental campaigns were carried out as to infer, at first, the behavior of the single ceramic tiles and, secondly, the behavior of ceramic-composite targets. The analytical model is based on the mechanical and energy considerations. The modified Bernoulli equation has been implemented to simulate the interaction between the projectile and the ceramic tile. The energy formulation has been adopted to describe the deformation of the composite backing plate and is based on the wave propagation theory to evaluate every energy absorption mechanism. The numerical model, developed within the LS-DYNA environment, is based on a fully-Lagrangian finite-element analysis. This approach led to achieve results in good agreement with the experimental data, significantly reducing the computational time with respect to finer numerical techniques such as the Lagrangian analysis with SPH conversion. The analytical and numerical models have been eventually validated and compared with data obtained through the mentioned experimental campaigns and data available in literature. For both modelling approaches, good agreement has been obtained in terms of residual velocity of the projectile.File | Dimensione | Formato | |
---|---|---|---|
2019_04_Gregori.pdf
non accessibile
Descrizione: Testo tesi
Dimensione
8.29 MB
Formato
Adobe PDF
|
8.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146586