Wheels are mechanical components for which the safety is of primary importance and must be ensured in every working condition. In fact, before starting the production, a new-designed wheel undergoes standard safety tests, among which the rotary bending fatigue test and the side impact test. In this work a numerical model of both these tests is presented. The rotary bending fatigue model is developed within Abaqus and MatLab environments: a unitary load is applied to the wheel and then put in rotation to simulate the actual test. The model is enriched with the residual stress contribution in fatigue life computation. Residual stress measurements have been performed on a sample wheel with a diffractometer. Wheel spokes have been investigated both in surface and in depth by using an electropolisher to remove layers of material. Results have been employed for fatigue performance estimation, that is computed in terms of number of cycles to failure by means of Sines and Crossland criterions and a final comparison with experimental data is reported. The model of side impact test takes into account the most relevant involved components, that are the tire, the wheel, the supporting frame and the striker. The tire is modelled by taking into account the embedded plies while stiffness and damping of the rubber are computed by means of experimental tests. The supporting frame is calibrated in accordance with the standard prescription. Model results in terms of striker acceleration and spokes strain during impact are compared with experimental acquisition during an actual impact test.
Le ruote sono componenti meccanici per cui la sicurezza è di primaria importanza e deve essere assicurata in ogni condizione di lavoro. Infatti, prima di essere messa in produzione, un nuovo modello di ruota affronta diversi test standard di sicurezza, tra i quali la fatica alternata flessionale e l’impatto laterale. In questa tesi viene presentato un modello numerico di entrambi. Il modello di fatica alternata flessionale è sviluppato negli ambienti Abaqus e MatLab: un carico unitario è applicato alla ruota e poi messo in rotazione per simulare il test reale. Il modello è arricchito con il contributo alla vita a fatica delle tensioni residue: misure di tensione residua sono state effettuate con un diffrattometro sia sulla superficie delle razze della ruota sia in profondità usando l’elettrocorrosione per rimuovere strati di materiale. I risultati sono stati integrati nella stima della vita a fatica espressa in termini di numero di cicli a rottura per mezzo dei criteri di Sines e Crossland e viene riportato un confronto finale con i dati sperimentali. Il modello di impatto laterale considera i componenti coinvolti più rilevanti, che sono lo pneumatico, la ruota, la struttura di supporto e l’impattatore. Lo pneumatico è modellato prendendo in considerazione le tele che lo compongono mentre rigidezza e smorzamento della gomma sono calcolati a partire da test sperimentali. La struttura di supporto è calibrata seguendo le indicazioni della norma. I risultati del modello in termini di accelerazione dell’impattatore e deformazione delle razze sono confrontati con dati sperimentali da un impatto reale
Numerical simulation and experimental validation of standard safety tests for lightweight aluminum wheels
GRASSO, RICCARDO
2017/2018
Abstract
Wheels are mechanical components for which the safety is of primary importance and must be ensured in every working condition. In fact, before starting the production, a new-designed wheel undergoes standard safety tests, among which the rotary bending fatigue test and the side impact test. In this work a numerical model of both these tests is presented. The rotary bending fatigue model is developed within Abaqus and MatLab environments: a unitary load is applied to the wheel and then put in rotation to simulate the actual test. The model is enriched with the residual stress contribution in fatigue life computation. Residual stress measurements have been performed on a sample wheel with a diffractometer. Wheel spokes have been investigated both in surface and in depth by using an electropolisher to remove layers of material. Results have been employed for fatigue performance estimation, that is computed in terms of number of cycles to failure by means of Sines and Crossland criterions and a final comparison with experimental data is reported. The model of side impact test takes into account the most relevant involved components, that are the tire, the wheel, the supporting frame and the striker. The tire is modelled by taking into account the embedded plies while stiffness and damping of the rubber are computed by means of experimental tests. The supporting frame is calibrated in accordance with the standard prescription. Model results in terms of striker acceleration and spokes strain during impact are compared with experimental acquisition during an actual impact test.File | Dimensione | Formato | |
---|---|---|---|
Tesi_RG.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
35.7 MB
Formato
Adobe PDF
|
35.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146618