In the new era of innovation with the hype of the Industry 4.0, businesses are facing tough challenges to succeed in a global competitive market. Indeed, organisations are digitising and integrating essential functions within their internal vertical processes, as well as with their horizontal partners along the value chain. To proactively respond to these challenges, organisations’ management requires up-to-date and accurate performance information relatively to their businesses. Until now organisations following the saying “you can’t manage what you don’t measure” accustomed to the measurement of productivity of machinery, materials, workers and capital to control. Nowadays smart leaders across industries clearly feel the extent of the data management revolution and the actual potential of data driven decision-making. Considering this scenario and the increased relevance of data for organisations, it is clear the necessity of an appropriate and comprehensive data productivity measurement. Thus, the proposal of this Master thesis work is the definition of a metrics able to understand the current level of data exploitation in decision-making, enabling managers to improve their awareness and translating the gained knowledge into enhanced decision-making. The development of this index is done with the perspective to provide a quantitative measurement comparable between different companies and characterised by a good applicability in different sectors. The study is inspired by a previous work of Miragliotta et al. (2018) and principally relies on the parallelism with the traditional OEE (Overall Equipment Effectiveness) framework. The data productivity is broken into three main dimensions: data availability, quality and the performance of decision support system processing those data. Thanks to a thorough literature review multiple sub-dimensions have been identified together with an assessment methodology. The model is built following a maturity model approach, leading to the final computation of a numeric index. The path taken by this thesis work is towards the standardisation of the metrics proposed, with the aim to ensure the model transposition in business context, achieving a universal benchmark. The application in companies of different sizes belonging to several industries acknowledged the model to represent a good reference for organisations to assess data exploitation in decision-making and benchmark it against other business realities.
Nell’era dell’Industria 4.0 le realtà aziendali si trovano ad affrontare nuove sfide per affermarsi nel mercato competitivo globale. Le imprese si stanno muovendo verso una maggiore digitalizzazione, che permette da un lato l’integrazione di tutti i processi interni e dall’altro il coinvolgimento e la trasformazione dell’intera filiera produttiva. Per reagire prontamente a queste nuove sfide, le imprese devono essere in grado di monitorare in modo accurato e aggiornato le performance aziendali. Fino ad ora seguendo il detto “you can’t manage what you don’t measure“, le aziende sono state capaci di misurare la produttività di macchinari, materiali e lavoratori. Oggigiorno i leader delle diverse industrie avvertono chiaramente la portata della rivoluzione digitale e la conseguente potenzialità rappresentata dalla possibile ottimizzazione dei processi decisionali guidati dai dati. In questo scenario, caratterizzato da una sempre maggiore rilevanza dei dati, diviene evidente la necessità di definire una metrica appropriata per misurare la produttività del patrimonio informativo aziendale. Pertanto, l’indice è stato sviluppato nell’ottica di offrire alle diverse compagnie una misura quantitativa confrontabile e facilmente applicabile nei differenti settori. La nostra ricerca prende ispirazione dal lavoro proposto da Miragliotta et al. (2018), che trova il suo punto di partenza nel parallelismo con la struttura dell’OEE (Overall Equipment Effectiveness). Precisamente l’indice proposto si scompone secondo tre principali dimensioni: la disponibilità del dato, la sua qualità e come è processato dai sistemi di supporto alle decisioni (DSS). Grazie a un’approfondita analisi della letteratura, è stato possibile identificare molteplici sottodimensioni, insieme a un’eventuale metodologia di valutazione. Il modello è stato costruito basandosi sull’approccio Maturity Model, con la finalità di ottenere una sintesi numerica. Quest’ultima è stata progettata in una prospettiva di standardizzazione, per meglio permettere la ricezione del modello nelle realtà aziendali e il successivo riconoscimento a benchmark universale. Mediante l’applicazione del modello nelle diverse industrie, è stato possibile identificare l’indice proposto come un credibile primo punto di riferimento nella valutazione dei processi decisionali basati sull’analisi dei dati.
Data productivity measurement in the Industry 4.0 scenario : theoretical modelling and application in supply chain planning
PIZZADILI, CRISTINA;PICIACCHIA, MARIA ELISA
2017/2018
Abstract
In the new era of innovation with the hype of the Industry 4.0, businesses are facing tough challenges to succeed in a global competitive market. Indeed, organisations are digitising and integrating essential functions within their internal vertical processes, as well as with their horizontal partners along the value chain. To proactively respond to these challenges, organisations’ management requires up-to-date and accurate performance information relatively to their businesses. Until now organisations following the saying “you can’t manage what you don’t measure” accustomed to the measurement of productivity of machinery, materials, workers and capital to control. Nowadays smart leaders across industries clearly feel the extent of the data management revolution and the actual potential of data driven decision-making. Considering this scenario and the increased relevance of data for organisations, it is clear the necessity of an appropriate and comprehensive data productivity measurement. Thus, the proposal of this Master thesis work is the definition of a metrics able to understand the current level of data exploitation in decision-making, enabling managers to improve their awareness and translating the gained knowledge into enhanced decision-making. The development of this index is done with the perspective to provide a quantitative measurement comparable between different companies and characterised by a good applicability in different sectors. The study is inspired by a previous work of Miragliotta et al. (2018) and principally relies on the parallelism with the traditional OEE (Overall Equipment Effectiveness) framework. The data productivity is broken into three main dimensions: data availability, quality and the performance of decision support system processing those data. Thanks to a thorough literature review multiple sub-dimensions have been identified together with an assessment methodology. The model is built following a maturity model approach, leading to the final computation of a numeric index. The path taken by this thesis work is towards the standardisation of the metrics proposed, with the aim to ensure the model transposition in business context, achieving a universal benchmark. The application in companies of different sizes belonging to several industries acknowledged the model to represent a good reference for organisations to assess data exploitation in decision-making and benchmark it against other business realities.File | Dimensione | Formato | |
---|---|---|---|
2019_04_Piciacchia_Pizzadili.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
4.81 MB
Formato
Adobe PDF
|
4.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146642