Last mile delivery is the least efficient phase of the supply chain and contains up to 28% of the total delivery cost. A variety of community oriented economy business models are quickly emerging and growing all over the world, changing the manner in which services were traditionally provided and consumed. They are driven by technological, societal and economic factors. Among the possible strategies that can be executed to provide fast delivery services, there is crowdsourcing delivery. Crowdsourcing delivery is identified as the outsourcing of delivery services to a mass of performers. Due to the scarcity of scientific literature and to have a better understanding of the industry, a multiple case of firms operating in crowdsourced logistics was conducted. The companies are from different size, business models, market, number of users and so on… First, crowdsourced delivery companies which are the ones active in Italy or United States are selected, but of course most of them are internationally operating companies and they have different situation in different countries. For example, Deliveroo in Germany have different strategies from Italy and Glovo has different payment methods like cash payment in Spain and Italy but not in other countries. Hence, the market that is considered in this thesis is Italy and United States. And the chosen companies in Italy are: Glovo, Deliveroo, Uber Eats, Just Eat, MyMenu, Pappa Pronta, Pony Zero, Wala and Winelivery. In United State there are Deliv, Amazon Flex, Grubhub, Doordash, Caviar and Postmates and each of the companies are explained relatively and the information needed are inserted to the next analysis. Secondly, the main stakeholders of the system have been identified which in this case are: - Companies operating in crowdsourced delivery industry - Customers which send their orders to the crowdsourced delivery companies - Partners that have the products needed to be delivered - Riders or driver who are the people with free time or space to deliver a package or food from a Restaurant Then the current situation of the industry has been observed in order to find the most important and strategic initiatives. At the end 27 initiatives has been found and the information about these 27 initiatives are collected in an excel file in order to be analyzed in the next stages. The initiatives are related to the four main categories of stakeholders and are based on the main stakeholders’ perspective discussed before. For instance, in the point of view of the riders it is important that how they are going to earn, which is either per parcel or hourly based. But, the main goal of this project is to classify the players in different categories. So the companies are classified based on the information collected in previous stages and according to different perspectives the companies can be categorized in different ways. - From companies’ perspective, we can classify the companies in terms of the industry (Food, Parcel, anything…) and the market that they are operating internationally and nationally (just in Italy and U.S.). - But the customers’ point of view is different and from this point of view the companies can be categorized based on Ordering platforms (through App, Website or Telephone), the payment methods (seamless via credit cards or by cash), ability to write a review or rate the restaurants and drivers also ability to track the riders from the ordering moment to delivery minute. And the most important one the cost that they have to pay for the online ordering and the shipping costs. - Partners as another stakeholder of this system have different type of classification for the crowdsourced delivery companies. From their point of view, the possibility to set minimum order is important, and the other one is the costs that they need to pay to the companies since the delivery companies as well as delivering the parcel for the companies they do advertisings that indirectly brings customers for partners. - The last point of view considered for the classification of the selected companies is in Rider’s point of view. It is important to consider them because crowdsourced systems in general won’t work without crowd. The main reason for the people to participate in this kind of activities is to earn some money in their spare time. So generally the companies pay the riders based on number of parcels delivered or number of hours worked or a mix of these two models. The fourth phase of the project is the analysis which are based on the information collected in the excel and they are in a direction of how companies have been classified in the last phase. So in the classification part different classes has been shown while in the analysis phase the data has been demonstrated by graphs, charts and maps for better understanding of categories. Furthermore, there are numbers that explain the data, for instance in a bar pie it is visible that 30% of the companies in Italy pay the riders based on the number hours they were out in the streets waiting for orders to deliver. This part is the most important phase of the project since all the perspectives has been analyzed based on the collected information and the result are the prove of the classification stage. At the end, based on all the classifications and the analysis, the elements that enable crowdsourced logistics to work has been found and explained accurately. Which in this case are: 1. Crowd 2. Digital Implementation 3. Compensation 4. Voluntary 5. Delivery time 6. Company type 7. Goods type The other result extracted from the thesis is: Technologies that enables the crowdsourced delivery: 1. Mobile Devices 2. Digital Payment Infrastructure 3. Location Services 4. Verified User accounts and Reviews 5. Communication application programming interfaces and Platform-specific Algorithms Crowd logistics platforms enables people and other actors such as Technogy entrepreneurs and traditional delivery firms to offer novel services. This issue creates new employment, flexible working arrangements that helps smaller retailers to access a wider market and customer base. Crowdsourced logistics also make markets more efficient and competitive by developing matching between demand and supply. In addition to the role of mobile technology, social drivers such as population density plays a very important role in the improvement of the crowdsourced delivery. Increasing population density within cities has provided the basis for a critical mass that is the back bone of crowdsourced logistics platforms.
La consegna dell'ultimo miglio è la fase meno efficiente della catena di approvvigionamento e contiene fino al 28% del costo totale di consegna. Una varietà di modelli di business economici orientati alla comunità stanno rapidamente emergendo e crescendo in tutto il mondo, cambiando il modo in cui i servizi venivano tradizionalmente forniti e consumati. Sono guidati da fattori tecnologici, sociali ed economici. Tra le possibili strategie che possono essere eseguite per fornire servizi di consegna veloce, c'è la consegna di crowdsourcing. La consegna di Crowdsourcing è identificata come l'esternalizzazione di servizi di consegna a una massa di artisti. A causa della scarsità di letteratura scientifica e di una migliore comprensione del settore, è stato condotto un caso multiplo di imprese che operano nella logistica crowdsourcing. Le aziende provengono da diverse dimensioni, modelli di business, mercato, numero di utenti e così via ... Innanzitutto vengono selezionate le società di consegna con crowdsourcing attive in Italia o negli Stati Uniti, ma la maggior parte di esse sono società operative a livello internazionale e hanno situazioni diverse nei diversi paesi. Ad esempio, Deliveroo in Germania ha diverse strategie dall'Italia e Glovo ha diversi metodi di pagamento come il pagamento in contanti in Spagna e in Italia, ma non in altri paesi. Quindi, il mercato considerato in questa tesi è l'Italia e gli Stati Uniti. E le aziende scelte in Italia sono: Glovo, Deliveroo, Uber Eats, Just Eat, MyMenu, Pappa Pronta, Pony Zero, Wala e Winelivery. Negli Stati Uniti esistono Deliv, Amazon Flex, Grubhub, Doordash, Caviar e Postmates e ciascuna delle aziende viene spiegata relativamente e le informazioni necessarie vengono inserite nella successiva analisi. In secondo luogo, sono stati identificati i principali attori del sistema che in questo caso sono: - Le aziende che operano nel settore delle consegne crowdsourcing - I clienti che inviano i loro ordini alle società di consegna crowdsourcing - I partner che hanno i prodotti necessari per essere consegnati - Piloti o autisti che sono persone con tempo o spazio libero per consegnare un pacco o cibo da un ristorante Quindi è stata osservata la situazione attuale del settore al fine di trovare le iniziative più importanti e strategiche. Alla fine sono state individuate 27 iniziative e le informazioni su queste 27 iniziative sono raccolte in un file excel per essere analizzate nelle fasi successive. Le iniziative sono collegate alle quattro principali categorie di parti interessate e si basano sulla prospettiva dei principali stakeholder discussi in precedenza. Ad esempio, dal punto di vista dei corridori è importante che come stanno andando a guadagnare, che è o per pacco o basato su base oraria. Ma l'obiettivo principale di questo progetto è classificare i giocatori in diverse categorie. Pertanto, le società vengono classificate in base alle informazioni raccolte nelle fasi precedenti e, in base alle diverse prospettive, le società possono essere classificate in modi diversi. - Dal punto di vista delle aziende, possiamo classificare le aziende in termini di settore (Food, Parcel, qualsiasi cosa ...) e il mercato che stanno operando a livello internazionale e nazionale (solo in Italia e negli Stati Uniti). - Ma il punto di vista dei clienti è diverso e da questo punto di vista le aziende possono essere categorizzate in base a piattaforme di ordinazione (tramite App, sito Web o telefono), i metodi di pagamento (seamless tramite carte di credito o in contanti), possibilità di scrivere una revisione o una valutazione dei ristoranti e dei conducenti anche la capacità di tenere traccia dei ciclisti dal momento dell'ordine al minuto di consegna. E il più importante è il costo che devono pagare per l'ordinazione online e le spese di spedizione. - I partner come altro stakeholder di questo sistema hanno un diverso tipo di classificazione per le aziende di consegna crowdsourcing. Dal loro punto di vista, la possibilità di fissare un ordine minimo è importante, e l'altro è i costi che devono pagare alle aziende dalle società di consegna e di consegnare il pacco per le società che pubblicizzano indirettamente i clienti per i partner. - L'ultimo punto di vista considerato per la classificazione delle società selezionate è nel punto di vista di Rider. È importante considerarli perché i sistemi di crowdsourcing in generale non funzioneranno senza folla. La ragione principale per cui le persone partecipano a questo tipo di attività è guadagnare un po 'di denaro nel loro tempo libero. Quindi, in genere, le aziende pagano i corridori in base al numero di pacchi consegnati o al numero di ore lavorate o a un mix di questi due modelli. La quarta fase del progetto è l'analisi che si basa sulle informazioni raccolte in Excel e che sono in una direzione di come le società sono state classificate nell'ultima fase. Quindi nella parte di classificazione sono state mostrate diverse classi mentre nella fase di analisi i dati sono stati dimostrati da grafici, grafici e mappe per una migliore comprensione delle categorie. Inoltre, ci sono numeri che spiegano i dati, ad esempio in un bar pie è evidente che il 30% delle aziende in Italia paga i riders in base al numero di ore in cui erano fuori per le strade in attesa di ordini da consegnare. Questa parte è la fase più importante del progetto poiché tutte le prospettive sono state analizzate in base alle informazioni raccolte e il risultato è la prova della fase di classificazione. Alla fine, sulla base di tutte le classificazioni e le analisi, gli elementi che consentono alla logistica crowdsourcing di funzionare sono stati trovati e spiegati accuratamente. Che in questo caso sono: 1. Folla 2. Implementazione digitale 3. Risarcimento 4. Volontario 5. Tempi di consegna 6. Tipo di società 7. Tipo di merce L'altro risultato estratto dalla tesi è: Tecnologie che consentono la consegna crowdsourcing: 1. Dispositivi mobili 2. Infrastruttura di pagamento digitale 3. Servizi di localizzazione 4. Account utente e recensioni verificati 5. Interfacce di programmazione delle applicazioni di comunicazione e algoritmi specifici della piattaforma Le piattaforme logistiche di crowdfunding consentono alle persone e ad altri attori come gli imprenditori di Technogy e le aziende di consegna tradizionali di offrire nuovi servizi. Questo problema crea nuovi posti di lavoro, accordi di lavoro flessibili che aiutano i piccoli rivenditori ad accedere a un mercato più ampio e alla base di clienti. La logistica basata sul crowdsourcing rende inoltre i mercati più efficienti e competitivi sviluppando l'incontro tra domanda e offerta. Oltre al ruolo della tecnologia mobile, i driver sociali come la densità della popolazione svolgono un ruolo molto importante nel miglioramento della consegna crowdsourcing. L'aumento della densità di popolazione all'interno delle città ha fornito la base per una massa critica che è la spina dorsale delle piattaforme logistiche crowdsourcing.
Classification and analysis of crowd-sourced logistics and last mile delivery providers
ABDOLVAND, MOJTABA
2018/2019
Abstract
Last mile delivery is the least efficient phase of the supply chain and contains up to 28% of the total delivery cost. A variety of community oriented economy business models are quickly emerging and growing all over the world, changing the manner in which services were traditionally provided and consumed. They are driven by technological, societal and economic factors. Among the possible strategies that can be executed to provide fast delivery services, there is crowdsourcing delivery. Crowdsourcing delivery is identified as the outsourcing of delivery services to a mass of performers. Due to the scarcity of scientific literature and to have a better understanding of the industry, a multiple case of firms operating in crowdsourced logistics was conducted. The companies are from different size, business models, market, number of users and so on… First, crowdsourced delivery companies which are the ones active in Italy or United States are selected, but of course most of them are internationally operating companies and they have different situation in different countries. For example, Deliveroo in Germany have different strategies from Italy and Glovo has different payment methods like cash payment in Spain and Italy but not in other countries. Hence, the market that is considered in this thesis is Italy and United States. And the chosen companies in Italy are: Glovo, Deliveroo, Uber Eats, Just Eat, MyMenu, Pappa Pronta, Pony Zero, Wala and Winelivery. In United State there are Deliv, Amazon Flex, Grubhub, Doordash, Caviar and Postmates and each of the companies are explained relatively and the information needed are inserted to the next analysis. Secondly, the main stakeholders of the system have been identified which in this case are: - Companies operating in crowdsourced delivery industry - Customers which send their orders to the crowdsourced delivery companies - Partners that have the products needed to be delivered - Riders or driver who are the people with free time or space to deliver a package or food from a Restaurant Then the current situation of the industry has been observed in order to find the most important and strategic initiatives. At the end 27 initiatives has been found and the information about these 27 initiatives are collected in an excel file in order to be analyzed in the next stages. The initiatives are related to the four main categories of stakeholders and are based on the main stakeholders’ perspective discussed before. For instance, in the point of view of the riders it is important that how they are going to earn, which is either per parcel or hourly based. But, the main goal of this project is to classify the players in different categories. So the companies are classified based on the information collected in previous stages and according to different perspectives the companies can be categorized in different ways. - From companies’ perspective, we can classify the companies in terms of the industry (Food, Parcel, anything…) and the market that they are operating internationally and nationally (just in Italy and U.S.). - But the customers’ point of view is different and from this point of view the companies can be categorized based on Ordering platforms (through App, Website or Telephone), the payment methods (seamless via credit cards or by cash), ability to write a review or rate the restaurants and drivers also ability to track the riders from the ordering moment to delivery minute. And the most important one the cost that they have to pay for the online ordering and the shipping costs. - Partners as another stakeholder of this system have different type of classification for the crowdsourced delivery companies. From their point of view, the possibility to set minimum order is important, and the other one is the costs that they need to pay to the companies since the delivery companies as well as delivering the parcel for the companies they do advertisings that indirectly brings customers for partners. - The last point of view considered for the classification of the selected companies is in Rider’s point of view. It is important to consider them because crowdsourced systems in general won’t work without crowd. The main reason for the people to participate in this kind of activities is to earn some money in their spare time. So generally the companies pay the riders based on number of parcels delivered or number of hours worked or a mix of these two models. The fourth phase of the project is the analysis which are based on the information collected in the excel and they are in a direction of how companies have been classified in the last phase. So in the classification part different classes has been shown while in the analysis phase the data has been demonstrated by graphs, charts and maps for better understanding of categories. Furthermore, there are numbers that explain the data, for instance in a bar pie it is visible that 30% of the companies in Italy pay the riders based on the number hours they were out in the streets waiting for orders to deliver. This part is the most important phase of the project since all the perspectives has been analyzed based on the collected information and the result are the prove of the classification stage. At the end, based on all the classifications and the analysis, the elements that enable crowdsourced logistics to work has been found and explained accurately. Which in this case are: 1. Crowd 2. Digital Implementation 3. Compensation 4. Voluntary 5. Delivery time 6. Company type 7. Goods type The other result extracted from the thesis is: Technologies that enables the crowdsourced delivery: 1. Mobile Devices 2. Digital Payment Infrastructure 3. Location Services 4. Verified User accounts and Reviews 5. Communication application programming interfaces and Platform-specific Algorithms Crowd logistics platforms enables people and other actors such as Technogy entrepreneurs and traditional delivery firms to offer novel services. This issue creates new employment, flexible working arrangements that helps smaller retailers to access a wider market and customer base. Crowdsourced logistics also make markets more efficient and competitive by developing matching between demand and supply. In addition to the role of mobile technology, social drivers such as population density plays a very important role in the improvement of the crowdsourced delivery. Increasing population density within cities has provided the basis for a critical mass that is the back bone of crowdsourced logistics platforms.File | Dimensione | Formato | |
---|---|---|---|
2019_04_Abdolvand.pdf
Open Access dal 09/04/2022
Descrizione: Thesis text
Dimensione
2.54 MB
Formato
Adobe PDF
|
2.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146685