Solar sails are an enabling technology that utilizes photons from the Sun for fuel-free propulsion. However, one of the major challenges is the design of an efficient attitude control that is able to precisely and continuously re-point the thrust vector in the required direction for orbit control. One method that has been flight tested on IKAROS is the use of devices capable of changing the reflectivity properties of the sail. This thesis proposes a new approach to attitude and orbit control of a solar sail with pixelated reflectivity control devices (RCDs) and a logic based on combinations of their state (ON/OFF). A control law that maps an ideal in-plane control torque to the reflectivity property of each pixel is derived, so that ideal controls that guarantee stability can be mimicked. It is shown, as the number of pixels of the sail membrane is increased, the real torque will converge to the ideal one. Different ideal attitude control laws are compared, these include an under-actuated, a reduced, and a standard proportional control law. The results show that this system succeeds in copying under-actuated and reduced controls, with good performances in terms of attitude angles accuracy, torque requirement, and mimic ability. However, the system is not able to copy the proportional control. The RCD-based control is extended to incorporate orbit tracking, mimicking an ideal acceleration without introducing torques. To this end, a Linear Quadratic Regulator orbit control is introduced which yields the time history of the attitude angles required for station-keeping on a libration point orbit. The resulting coupled orbit-attitude control is mapped optimally to ON/OFF states to each RCD pixel: for the attitude, only the reduced control is analysed. An example station-keeping problem in the solar sail circular restricted three-body problem is demonstrated in simulation with the aim of stabilizing the sail on an artificial equilibrium point. The results show that the sail asymptotically converges to a neighbourhood of the desired location, where the boundary of this neighbourhood can be decreased by increasing the number of RCD pixels.
Le vele solari sono una tecnologia che permette di utilizzare i fotoni dal Sole per una propulsione senza carburante. Tuttavia, una delle maggiori sfide è il design di un controllo d’assetto efficiente capace di puntare, precisamente e continuamente, il vettore spinta nella direzione richiesta dal controllo orbitale. Un metodo che è stato testato in volo su IKAROS consiste nell’utilizzo di congegni capaci di cambiare le proprietà di riflettività della vela. Questa tesi propone un nuovo approccio al controllo d’assetto e orbitale di una vela solare con dispositivi a controllo di riflettività (RCDs) scomposti in pixel e una logica basata sulle combinazioni dei loro stati (ON/OFF). Viene derivata una legge di controllo che mappa una coppia ideale nel piano della vela alle proprietà di ciascun pixel, così che i controlli ideali che garantiscono stabilità possano essere imitati. Viene mostrato che, con il crescere del numero di pixel, la coppia reale converge a quella ideale. Differenti leggi di controllo d’assetto sono comparate, includendo una legge di controllo sotto-attuata, una ridotta e una proporzionale standard. I risultati mostrano che questo sistema riesce a copiare i primi due con buone prestazioni in termini di accuratezza degli angoli d’assetto, richiesta di coppia e abilità di mimica. Tuttavia, il sistema non è in grado di copiare il controllo proporzionale. Il controllo basato sugli RCD è esteso per incorporare il tracciamento dell’orbita, simulando un’accelerazione ideale senza introdurre coppie. A questo fine, un controllo orbitale basato su un regolatore quadratico lineare viene introdotto, producendo la storia temporale degli angoli d’assetto richiesti per stazionare su un’orbita di un punto di librazione. Il controllo accoppiato risultante viene mappato in maniera ottimale agli stati ON/OFF di ciascun pixel: per l’assetto, solo il controllo ridotto è analizzato. Un problema di stazionamento viene usato come esempio, con lo scopo di stabilizzare la vela su un punto di equilibrio artificiale. I risultati mostrano che la vela converge asintoticamente a un intorno del punto desiderato, i cui limiti si possono ridurre aumentando il numero di pixel.
Attitude and orbit control of a solar sail through distributed reflectivity modulation devices
NEGRI, ALESSIO
2017/2018
Abstract
Solar sails are an enabling technology that utilizes photons from the Sun for fuel-free propulsion. However, one of the major challenges is the design of an efficient attitude control that is able to precisely and continuously re-point the thrust vector in the required direction for orbit control. One method that has been flight tested on IKAROS is the use of devices capable of changing the reflectivity properties of the sail. This thesis proposes a new approach to attitude and orbit control of a solar sail with pixelated reflectivity control devices (RCDs) and a logic based on combinations of their state (ON/OFF). A control law that maps an ideal in-plane control torque to the reflectivity property of each pixel is derived, so that ideal controls that guarantee stability can be mimicked. It is shown, as the number of pixels of the sail membrane is increased, the real torque will converge to the ideal one. Different ideal attitude control laws are compared, these include an under-actuated, a reduced, and a standard proportional control law. The results show that this system succeeds in copying under-actuated and reduced controls, with good performances in terms of attitude angles accuracy, torque requirement, and mimic ability. However, the system is not able to copy the proportional control. The RCD-based control is extended to incorporate orbit tracking, mimicking an ideal acceleration without introducing torques. To this end, a Linear Quadratic Regulator orbit control is introduced which yields the time history of the attitude angles required for station-keeping on a libration point orbit. The resulting coupled orbit-attitude control is mapped optimally to ON/OFF states to each RCD pixel: for the attitude, only the reduced control is analysed. An example station-keeping problem in the solar sail circular restricted three-body problem is demonstrated in simulation with the aim of stabilizing the sail on an artificial equilibrium point. The results show that the sail asymptotically converges to a neighbourhood of the desired location, where the boundary of this neighbourhood can be decreased by increasing the number of RCD pixels.File | Dimensione | Formato | |
---|---|---|---|
2019_04_Negri.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
8.14 MB
Formato
Adobe PDF
|
8.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146721