Proper silencer design is important to achieve the reduction of gas dynamic noise of the vehicles. The regular three-dimensional numerical approach is complicated since the performance of silencer is always related to the internal combustion engine which is a highly complicated system to be modeled. In this thesis, the one-dimensional research code Gasdyn, developed by Energy Department of Politecnico Di Milano, has been adopted to model the acoustic behavior of the silencers. The numerical scheme adopted for the solution is the symmetric second order two-step Lax-Wendroff Method. The treatment of the boundary condition relies on the basis of the classic assumption of quasi-steady flow, involving the steady conservation equation of mass, momentum, and energy, solved by the mesh-method of characteristics (MOCs). The excitation source is set as a white noise which allows determining the Transmission Loss (TL) and transfer function (TF) of the system by a Fast Fourier Transform (FFT) spectral analysis with an extremely short computational time. Several types of silencers will be simulated, starting from the basic reactive and dissipative configurations, until the complex configurations. For each of them, the result will be compare with those obtained experimentally to determine the accuracy of the numerical approach.
La progettazione corretta del silenziatore è importante per ottenere la riduzione del rumore dovuto alla dinamica dei gas nei veicoli. L'approccio numerico 3D tradizionale è complicato poichè la performance del silenziatore è sempre collegata a quella del motore a combustione interna che è un sistema molto complesso da modellare. In questa tesi, il codice sperimentale 1D Gasdyn, sviluppato dal Dipartimento di Energia del Politecnico di Milano, è stato usato per modellare il comportamento acustico dei silenziatori. Lo schema numerico adottato per la soluzione è il metodo di Lax-Wendroff, cioè un metodo simmetrico di secondo ordine a due fasi. Il trattamento delle condizioni agli estremi si basa sulla assunzione classica di flusso quasi-stazionario, quindi comprendendo la conservazione stazionaria di massa, quantità di moto ed energia, risolte con il mesh-method of characteristics (MOCs). La fonte di eccitazione imposta è un rumore bianco e ciò permette di determinare la Transmission Loss (TL) e la Transfer Function (TF) del sistema attraverso una analisi spettrale con Fast Fourier Transform (FFT) e un tempo computazionale molto ridotto.
One-dimensional numerical approach for predicting attenuation performance of stand-alone silencers of internal combustion engine
KRISNAYUDI, I WAYAN;KHAN, ASADULLAH
2018/2019
Abstract
Proper silencer design is important to achieve the reduction of gas dynamic noise of the vehicles. The regular three-dimensional numerical approach is complicated since the performance of silencer is always related to the internal combustion engine which is a highly complicated system to be modeled. In this thesis, the one-dimensional research code Gasdyn, developed by Energy Department of Politecnico Di Milano, has been adopted to model the acoustic behavior of the silencers. The numerical scheme adopted for the solution is the symmetric second order two-step Lax-Wendroff Method. The treatment of the boundary condition relies on the basis of the classic assumption of quasi-steady flow, involving the steady conservation equation of mass, momentum, and energy, solved by the mesh-method of characteristics (MOCs). The excitation source is set as a white noise which allows determining the Transmission Loss (TL) and transfer function (TF) of the system by a Fast Fourier Transform (FFT) spectral analysis with an extremely short computational time. Several types of silencers will be simulated, starting from the basic reactive and dissipative configurations, until the complex configurations. For each of them, the result will be compare with those obtained experimentally to determine the accuracy of the numerical approach.File | Dimensione | Formato | |
---|---|---|---|
2019_04_Krisnayudi.pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
3.3 MB
Formato
Adobe PDF
|
3.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146727