Solid composite propellants are heterogeneous materials produced by the mechanical mixing of oxidants, metal powders and polymeric binders. The presence of metal powders allows to increase both the density and the energy content of these propellants. However, during combustion, these powders can generate Condensed Combustion Products (CCP), namely agglomerates and aggregates of various sizes and shapes. CCP can cause fluid dynamic losses in the rockets (2D flow), or erosion due to the impact of these particles in the throat of the nozzle. This work aims to design and validate a new CCP collection system generated by the combustion of different solid composite propellant formulations, at different pressure conditions and at different quenching distances. The formulations analyzed are four, all composed of HTPB and ammonium perchlorate: three propellants contain aluminum 19% mass fraction, while one contains aluminum 18%. The design of the new collection system is based on the experimental line already present in the Space Propulsion Laboratory of the Politecnico di Milano. In this way, it is possible to compare the experimental data of both configurations and then have a validation of the new experimental line. The results of the experiments reveal a congruent trend compared to the theory and the tests performed with the old experimental line. The results obtained show that as the pressure in the combustion chamber increases, the average size of the agglomerates tends to decrease. This happens because the burning rate of the propellant increases with the increase of the pressure, and the time of permanence on the surface of combustion, and so the growth of the agglomerate, are reduced. Furthermore, the experiments carried out by varying the height of the quenching showed that, by increasing the distance to which the agglomerates "freeze", the particle size decreases since the aluminum contained in the CCP has more time to complete the combustion.
I propellenti solidi compositi sono materiali eterogenei prodotti tramite il mescolamento meccanico di ossidanti, polveri metalliche e leganti polimerici. La presenza di polveri metalliche permette di aumentare sia la densità che il contenuto energetico di questi propellenti. Tuttavia durante la combustione, queste polveri possono generare i Condensed Combustion Products (CCP), ovvero agglomerati ed aggregati di varie dimensioni e forme. I CCP possono provocare perdite fluidodinamiche negli endoreattori (2D flow), oppure erosioni dovute all’impatto di queste particelle nella gola dell’ugello. Questo lavoro si pone l’obiettivo di progettare e validare un nuovo sistema di raccolta dei CCP generati dalla combustione di diverse formulazioni di propellenti solidi compositi, a diverse condizioni di pressione ed a diverse altezze di quenching. Le formulazioni analizzate sono quattro, tutte composte da HTPB e perclorato di ammonio: tre propellenti contengono alluminio al 19% di frazione massica, mentre l’ultimo ne contiene il 18%. Il design del nuovo sistema di raccolta si basa sulla linea sperimentale già presente all’interno dello Space Propulsion Laboratory del Politecnico di Milano. In questo modo è possibile confrontare i dati sperimentali di entrambe le configurazioni ed avere quindi una validazione della nuova linea sperimentale. I risultati degli esperimenti rivelano un andamento congruente rispetto alla teoria ed i test eseguiti con la vecchia linea sperimentale. I risultati ottenuti mostrano che all’aumentare della pressione in camera di combustione, le dimensioni medie degli agglomerati tendono a diminuire. Questo avviene perché il burning rate del propellente aumenta con l’aumentare della pressione, ed il tempo di permanenza sulla superficie di combustione, e quindi l’accrescimento dell’agglomerato, si riducono. Inoltre gli esperimenti svolti facendo variare l’altezza di quenching hanno mostrato come, aumentando la distanza alla quale gli agglomerati si “congelano”, le dimensioni delle particelle diminuiscano poiché l’alluminio contenuto nei CCP ha più tempo a disposizione per completare la combustione.
Design and validation of a collection system for solid propellant CCP
PERLINI, NICOLA
2018/2019
Abstract
Solid composite propellants are heterogeneous materials produced by the mechanical mixing of oxidants, metal powders and polymeric binders. The presence of metal powders allows to increase both the density and the energy content of these propellants. However, during combustion, these powders can generate Condensed Combustion Products (CCP), namely agglomerates and aggregates of various sizes and shapes. CCP can cause fluid dynamic losses in the rockets (2D flow), or erosion due to the impact of these particles in the throat of the nozzle. This work aims to design and validate a new CCP collection system generated by the combustion of different solid composite propellant formulations, at different pressure conditions and at different quenching distances. The formulations analyzed are four, all composed of HTPB and ammonium perchlorate: three propellants contain aluminum 19% mass fraction, while one contains aluminum 18%. The design of the new collection system is based on the experimental line already present in the Space Propulsion Laboratory of the Politecnico di Milano. In this way, it is possible to compare the experimental data of both configurations and then have a validation of the new experimental line. The results of the experiments reveal a congruent trend compared to the theory and the tests performed with the old experimental line. The results obtained show that as the pressure in the combustion chamber increases, the average size of the agglomerates tends to decrease. This happens because the burning rate of the propellant increases with the increase of the pressure, and the time of permanence on the surface of combustion, and so the growth of the agglomerate, are reduced. Furthermore, the experiments carried out by varying the height of the quenching showed that, by increasing the distance to which the agglomerates "freeze", the particle size decreases since the aluminum contained in the CCP has more time to complete the combustion.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Nicola_Perlini_884088.pdf
non accessibile
Descrizione: Tesi
Dimensione
9.7 MB
Formato
Adobe PDF
|
9.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146781