The mobilities of charge carriers in organic semiconductors are a key parameters for their performance in electronic devices. Unfortunately, it is still difficult to correlate them with the structure of the π-conjugated molecules which characterize them. It would be very important to predict these mobilities by computational methods, but this is even more difficult. The BTBT core is a promising new alternative to oligocenes, and has drawn much attention lately due to its high charge transport capabilities for organic electronics applications. In this perspective, the charge mobilities of eight benzothieno[3, 2-b]benzothiophene (BTBT) derivatives in a range of temperatures between 20 and 120 °C using Kinetic Monte Carlo simulations in a pure hopping regime. Transfer integrals were estimated via dimer projection calculations based on DFT data. Our selection of BTBT derivatives took into account (i) availability of reliable atomistic crystal structures, (ii) thermal stability in a 20-120 °C range, and (iii) availability of experimental charge mobilities for single crystals or thin films. The hopping model, although relatively straightforward and computationally inexpensive, is not always reliable in the simulation of molecular crystal mobilities, which are expected to have rather high mobilities. Indeed, no simple correlation was found between experimental and computational data. We attempt a critical discussion of the results, on the basis of the approximations in the calculations and the uncertainties in the experimental data.
Le mobilità di carica nei semiconduttori organici sono un parametro fondamentale per il loro impiego nei dispositivi elettronici. Sfortunatamente è ancora difficile correlare le mobilità con la struttura delle molecole π-coniugate che li caratterizza. Sarebbe molto importante predire queste mobilità con metodi computazionali ma questo è ancora più difficile. Materiali basati sul BTBT sono promettenti alternative agli oligoceni, e hanno recentemente richiamato l’attenzione in virtù delle loro ottime proprietà di trasporto di carica per applicazioni di elettronica organica. Da questo punto di vista, le mobilità di otto derivati del benzotieno[3,2-b]benzotiofene (BTBT) sono state calcolate tramite simulazioni Monte Carlo Cinetiche in un regime di hopping puro, in un intervallo di temperatura da 20 a 120 °C. Gli Integrali di trasferimento sono stati stimati attraverso l’approccio di ‘dimer projection’ da DFT. I derivati del BTBT sono stati selezionati tenendo conto di (i) disponibilità di strutture cristalline atomistiche affidabili, (ii) stabilità termica nell’intervallo 20-120 °C, e (iii) disponibilità di misure sperimentali delle mobilità di carica per cristalli singoli o film sottili. Il modello di hopping, nonostante sia relativamente semplice e computazionalmente poco costoso, non è sempre attendibile nella simulazione delle mobilità in cristalli molecolari, le quali sono tipicamente piuttosto alte. Infatti, nessuna buona correlazione è stata trovata tra i dati sperimentali e quelli calcolati. I risultati di questo studio sono commentati alla luce delle approssimazioni introdotte nei calcoli e delle possibili incertezze associate ai dati sperimentali.
Charge mobility calculations on benzothienobenzothiophene-based crystalline materials
MODONUTTI, DIEGO
2018/2019
Abstract
The mobilities of charge carriers in organic semiconductors are a key parameters for their performance in electronic devices. Unfortunately, it is still difficult to correlate them with the structure of the π-conjugated molecules which characterize them. It would be very important to predict these mobilities by computational methods, but this is even more difficult. The BTBT core is a promising new alternative to oligocenes, and has drawn much attention lately due to its high charge transport capabilities for organic electronics applications. In this perspective, the charge mobilities of eight benzothieno[3, 2-b]benzothiophene (BTBT) derivatives in a range of temperatures between 20 and 120 °C using Kinetic Monte Carlo simulations in a pure hopping regime. Transfer integrals were estimated via dimer projection calculations based on DFT data. Our selection of BTBT derivatives took into account (i) availability of reliable atomistic crystal structures, (ii) thermal stability in a 20-120 °C range, and (iii) availability of experimental charge mobilities for single crystals or thin films. The hopping model, although relatively straightforward and computationally inexpensive, is not always reliable in the simulation of molecular crystal mobilities, which are expected to have rather high mobilities. Indeed, no simple correlation was found between experimental and computational data. We attempt a critical discussion of the results, on the basis of the approximations in the calculations and the uncertainties in the experimental data.File | Dimensione | Formato | |
---|---|---|---|
calculationdetails(1).pdf
non accessibile
Descrizione: TESTO DELLA TESI
Dimensione
3.31 MB
Formato
Adobe PDF
|
3.31 MB | Adobe PDF | Visualizza/Apri |
TESI(1).pdf
non accessibile
Dimensione
7.89 MB
Formato
Adobe PDF
|
7.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/147253