The present work is focused on the synthesis of the hybrid composite reduced graphene oxide (rGO) / stannic oxide (SnO2), obtained by exploiting the ability of the redox couple Sn(II)/Sn(IV) as reducing agent, for gas sensing applications. Tin oxide is a known and commonly used sensing material for gas detection, thanks to its facile synthesis. In the present study, the hybrid nanostructured composite rGO/SnO2 was synthesized in order to improve tin oxide sensitivity and, according to literature, thus being able to utilize its properties at room temperature. The synthesis method employed in this thesis exploits the mutual interaction between graphene oxide (GO) and the metallic precursor SnCl2 in order to obtain the aforementioned composite rGO/SnO2. During the optimization of the production process, various methods were analyzed and compared in order to improve the quality of the final material. The use of commercial GO was tested and compared to lab-synthesized GO in terms of dispersibility, particles dimensions and, in general, as a precursor for the synthesis of the rGO/SnO2 composite. After having selected the lab-synthesized GO, the finer tuning of the synthesis procedure was mainly focused on the maximization of the interaction between GO/SnCl2, in order to obtain a better final result and being able to have a higher degree of control on the overall process. Firstly, the pH of the solution was kept at 10 during the whole synthesis; this provides a better GO dispersion but a stronger and less controllable precipitation of tin dioxide. Successively, the metallic salt SnCl2 was dissolved in an aqueous solution with the addition of HCl until the solution was transparent. However, after the mixing of the GO dispersion and the tin solution, the excessive acidity of the environment caused an uncontrolled agglomeration of the rGO/SnO2 particles. The best result was obtained by adding just enough NH4OH to be able to neutralize the hydrochloric acid released upon the hydrolysis of SnCl2. The obtained composite underwent XRD analysis to verify the crystalline nature of the material. The results showed the successful synthesis of nanometric stannic oxide as a precipitate on rGO flakes. The nanocomposite was later utilized for the formulation of an ink, aimed at the final application, i.e. inkjet printing of gas sensors.
Il presente lavoro è incentrato sulla sintesi del composito ibrido grafene ossido ridotto (rGO) / ossido stannico (SnO2), ottenuto sfruttando la capacità riducente della coppia redox Sn(II)/Sn(IV), per applicazioni in sensori di gas. L’ossido di stagno è un noto e comunemente utilizzato materiale per il sensing dei gas, grazie alla semplice sintesi. In questo studio, è stato ottenuto il composto ibrido nanostrutturato rGO/SnO2 al fine di aumentare la sensibilità dell’ossido in questione e, come noto da letteratura, poterne sfruttare le caratteristiche di gas sensing a temperatura ambiente. Il metodo di sintesi impiegato in questo lavoro sfrutta la mutua interazione tra il grafene ossido (GO) e il precursore metallico SnCl2 per l’ottenimento del composito sopracitato rGO/SnO2. Durante l’ottimizzazione del processo di produzione del composito, diversi metodi sono stati analizzati e comparati per poter migliorare la qualità finale del materiale. L’utilizzo di GO commerciale è stato testato e comparato con GO sintetizzato in laboratorio in termini di facilità di dispersione, dimensione del particolato in sospensione e, in generale, come precursore per la realizzazione del composito rGO/SnO2. Dopo aver optato per il GO prodotto in laboratorio, l’affinamento della tecnica di sintesi è stato principalmente orientato alla massimizzazione dell’interazione GO/SnCl2 per poter ottenere un miglior risultato finale e in modo da poter aumentare il livello di controllo sul processo di sintesi. In prima istanza, il pH della soluzione è stato mantenuto durante la sintesi a 10: ciò comporta una migliore dispersione del GO ma una precipitazione più massiccia e meno controllabile dell’ossido stannico. Successivamente il sale metallico SnCl2 è stato dissolto in una soluzione acquosa con aggiunta di HCl, fino all’ottenimento di una soluzione trasparente, tuttavia una volta unita la soluzione di stagno alla dispersione di GO, l’eccessiva acidità dell’ambiente ha comportato un’agglomerazione incontrollata delle particelle di composito rGO/SnO2. Il migliore risultato è stato ottenuto addizionando una quantità di NH4OH tale da neutralizzare l’acido cloridrico rilasciato dall’idrolisi del SnCl2. Il composito così ottenuto è stato analizzato all’XRD per verificare la struttura cristallina del materiale. I risultati ottenuti hanno mostrato l’ottenimento di ossido stannico nanometrico precipitato su rGO. Il nanocomposito ottenuto è stato, in seguito, utilizzato per la formulazione di un inchiostro volto all’applicazione finale, cioè la stampa inkjet di sensori per gas.
Reduced graphene oxide/tin oxide composite as active material for inkjet-printable sensors
BUYUKCELIK, ISIK
2017/2018
Abstract
The present work is focused on the synthesis of the hybrid composite reduced graphene oxide (rGO) / stannic oxide (SnO2), obtained by exploiting the ability of the redox couple Sn(II)/Sn(IV) as reducing agent, for gas sensing applications. Tin oxide is a known and commonly used sensing material for gas detection, thanks to its facile synthesis. In the present study, the hybrid nanostructured composite rGO/SnO2 was synthesized in order to improve tin oxide sensitivity and, according to literature, thus being able to utilize its properties at room temperature. The synthesis method employed in this thesis exploits the mutual interaction between graphene oxide (GO) and the metallic precursor SnCl2 in order to obtain the aforementioned composite rGO/SnO2. During the optimization of the production process, various methods were analyzed and compared in order to improve the quality of the final material. The use of commercial GO was tested and compared to lab-synthesized GO in terms of dispersibility, particles dimensions and, in general, as a precursor for the synthesis of the rGO/SnO2 composite. After having selected the lab-synthesized GO, the finer tuning of the synthesis procedure was mainly focused on the maximization of the interaction between GO/SnCl2, in order to obtain a better final result and being able to have a higher degree of control on the overall process. Firstly, the pH of the solution was kept at 10 during the whole synthesis; this provides a better GO dispersion but a stronger and less controllable precipitation of tin dioxide. Successively, the metallic salt SnCl2 was dissolved in an aqueous solution with the addition of HCl until the solution was transparent. However, after the mixing of the GO dispersion and the tin solution, the excessive acidity of the environment caused an uncontrolled agglomeration of the rGO/SnO2 particles. The best result was obtained by adding just enough NH4OH to be able to neutralize the hydrochloric acid released upon the hydrolysis of SnCl2. The obtained composite underwent XRD analysis to verify the crystalline nature of the material. The results showed the successful synthesis of nanometric stannic oxide as a precipitate on rGO flakes. The nanocomposite was later utilized for the formulation of an ink, aimed at the final application, i.e. inkjet printing of gas sensors.| File | Dimensione | Formato | |
|---|---|---|---|
|
2019_4_BUYUKCELIK.pdf
non accessibile
Descrizione: Thesis Text
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/147282