The aim of this thesis work is the development and characterization of bio–based composite materials from thermoset lignin–epoxy blends. To this aim, three types of lignin (soda, kraft and organosolv) were characterized to determine their chemistry, the respective number of functional groups and consequent reactivity. The analyses which were employed to this end were Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis and gel permeation chromatography. In parallel, a batch of thermally treated lignin powders underwent the same testing, with the aim of comparing the mechanical properties of the final material before and after the treatment and any modification, chemical or physical, which would have occurred in the lignin. Using the aforementioned samples, various lignin–epoxy blend specimens were prepared and cured, some reinforced with chopped glass fibers and chopped carbon fibers in varying concentration. Results show a net increase in mechanical properties after thermal treatment of the lignin powders, with lower porosity and improved toughness. Among the lignins, only the soda and kraft samples produced specimens viable for mechanical testing and the latter showed decisively better mechanical properties. Fiber concentration in the composite showed divergent trends, with mechanical properties improving up to a maximum percentage of fibers. Carbon reinforced composites showed an opposite trend, hinting at a more complex series of phenomena occurring in the material. The fracture surface of cured samples was then examined via scanning electron microscopy and their percentage of crosslinking was estimated via solubilization tests in dimethyl sulfoxide. The materials proved satisfactory in their use as a composite matrix, paving the way for their future use as a renewable alternative to oil–derived resins.
Lo scopo di questo lavoro di tesi consiste nello sviluppo e caratterizzazione di materiali compositi a base di materiale rinnovabile che includano una matrice termoindurente a base di lignina e resina epossidica. A tale scopo tre tipi diversi di lignina provenienti da diverse tecniche di pulping (soda, kraft e organosolv) sono stati caratterizzati allo scopo di determinarne le proprietà chimico–fisiche. Le tecniche sperimentali di analisi utilizzate comprendono la spettroscopia ad infrarossi a trasformata di Fourier, calorimetria differenziale a scansione, analisi termogravimetrica e cromatografia a permeazione di gel. In parallelo, tre campioni delle stesse lignine sono stati sottoposti ad un trattamento termico e sottoposti alle stesse tecniche di caratterizzazione, con lo scopo di evidenziare le modifiche chimiche e fisiche fra il campione trattato e non. I campioni di lignina, trattati e non, sono stati poi utilizzati per la preparazione di blend a base epossidica e fatti reticolare, sia in forma pura (i.e., privi di rinforzo) sia con l’aggiunta di fibre corte di carbonio e vetro a differenti concentrazioni. I campioni sono poi stati sottoposti a test di trazione, mostrando un miglioramento netto delle proprietà meccaniche nei campioni sottoposti a trattamento termico, che hanno mostrato maggior tenacia e un minor grado di porosità. Solo i campioni da processi soda e kraft si sono dimostrati adatti all’utilizzo in test meccanici ed, in particolare, il campione da processo kraft ha dimostrato le proprietà meccaniche migliori. L’aggiunta di fibre ai campioni ha portato a modifiche divergenti delle proprietà fra un campione e l’altro, con proprietà in genere migliori per alte concentrazioni di fibre di vetro (fino ad un massimo) ed una tendenza opposta per quanto riguarda le fibre di carbonio. La superficie di frattura dei campioni è stata esaminata per mezzo di un microscopio elettronico a scansione ed il grado di reticolazione degli stessi è stato valutato per mezzo di test di solubilizzazione in dimetilsolfossido. Il materiale, nel complesso, si è dimostrato un’adeguata matrice per compositi, lasciando sperare in un utilizzo futuro di materiali rinnovabili a livello industriale.
Development and characterization of fiber reinforced bio-based composite materials from lignin
SALVETTI, MATTIA
2017/2018
Abstract
The aim of this thesis work is the development and characterization of bio–based composite materials from thermoset lignin–epoxy blends. To this aim, three types of lignin (soda, kraft and organosolv) were characterized to determine their chemistry, the respective number of functional groups and consequent reactivity. The analyses which were employed to this end were Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis and gel permeation chromatography. In parallel, a batch of thermally treated lignin powders underwent the same testing, with the aim of comparing the mechanical properties of the final material before and after the treatment and any modification, chemical or physical, which would have occurred in the lignin. Using the aforementioned samples, various lignin–epoxy blend specimens were prepared and cured, some reinforced with chopped glass fibers and chopped carbon fibers in varying concentration. Results show a net increase in mechanical properties after thermal treatment of the lignin powders, with lower porosity and improved toughness. Among the lignins, only the soda and kraft samples produced specimens viable for mechanical testing and the latter showed decisively better mechanical properties. Fiber concentration in the composite showed divergent trends, with mechanical properties improving up to a maximum percentage of fibers. Carbon reinforced composites showed an opposite trend, hinting at a more complex series of phenomena occurring in the material. The fracture surface of cured samples was then examined via scanning electron microscopy and their percentage of crosslinking was estimated via solubilization tests in dimethyl sulfoxide. The materials proved satisfactory in their use as a composite matrix, paving the way for their future use as a renewable alternative to oil–derived resins.File | Dimensione | Formato | |
---|---|---|---|
SALVETTI Mattia - master thesis (2019).pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
6.2 MB
Formato
Adobe PDF
|
6.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/147327