Gamma radiation detection finds many applications in different fields, including astrophysics, medical diagnostics and nuclear physics. Nowadays large Lanthanum Bromide crystals coupled to Photomultiplier Tubes (PMTs) represent the state of the art for gamma detection modules, in particular for spectroscopic measurements. Nevertheless there is the interest in substituting photomultiplier tubes with solid state photodetectors like Silicon Photomultipliers (SiPMs) due to their significant advantages such as insensitivity to magnetic fields, low bias voltage, fast response and mechanical robustness. The aim of this thesis work, which is in the context of the GAMMA project, supported by Istituto Nazionale di Fisica Nucleare (INFN), is the design, development and experimental characterization of a -ray spectrometer based on large Lanthanum Bromide scintillator crystals coupled with Silicon Photomultipliers for nuclear physics experiments with energies ranging from 100 keV to 20MeV, characterized by state-ofthe- art energy resolutions and imaging capability in a compact, modular and robust structure. In order to perform the readout of large scintillator crystals, a matrix of 144 Silicon Photomultipliers has been designed using NUV-HD SiPMs from Fondazione Bruno Kessler (FBK), which have been chosen thanks to the high Photon Detection Efficiency in correspondence of the peak emission wavelength of the crystal, high cell density and low Dark Count Rate. This thesis work focused on the design of the SiPM tile, from the optimization of its size to the selection of connectors, on the development of the electronics boards devoted to the data acquisition and to the biasing of the detectors with a variable voltage so as to compensate gain shifts due to temperature variations, on the design of the mechanical housing of the spectrometer, which is an important element to ensure robustness and ease of handling to the system, on the development of the firmware and software controlling the instrument and finally on the characterization and validation of its performances through experimental measurements.
La rivelazione di radiazione gamma trova molte applicazioni in diversi ambiti, tra cui l’astrofisica, la diagnostica medica e la fisica nucleare. Al giorno d’oggi, cristalli di Bromuro di Lantanio di grandi dimensioni accoppiati a Tubi Fotomoltiplicatori (PMT) rappresentano lo stato dell’arte per i rivelatori di radiazione gamma, in particolare per misure spettroscopiche. Tuttavia c’è l’interesse a sostituire i tubi fotomoltiplicatori con fotorivelatori a stato solido come i Silicon Photomultiplier (SiPM) grazie ai loro significativi vantaggi come l’insensibilità ai campi magnetici, la bassa tensione di polarizzazione, una rapida risposta e un’elevata robustezza meccanica. Lo scopo di questo lavoro di tesi, che si inserisce nel contesto del progetto GAMMA, sostenuto dall’Istituto Nazionale di Fisica Nucleare (INFN), consiste nella progettazione, sviluppo e caratterizzazione sperimentale di uno spettrometro gamma basato su cristalli scintillatori di Bromuro di Lantanio di grandi dimensioni accoppiati a Silicon Photomultipliers, per esperimenti di fisica nucleare con energie che vanno da 100 keV a 20MeV, caratterizzato da risoluzione energetica allo stato dell’arte e capacità di imaging, in una struttura compatta, modulare e robusta. Per la lettura di cristalli scintillatori di grandi dimensioni, è stata progettata una matrice di 144 Silicon Photomultiplier utilizzando SiPM NUV-HD forniti dalla Fondazione Bruno Kessler (FBK), che sono stati scelti per la loro alta Photon Detection Efficiency in corrispondenza della lunghezza d’onda di massima emissione del cristallo, per l’alta densità delle celle e per il basso Dark Count Rate.Il lavoro di tesi si è concentrato sulla progettazione della matrice di SiPM, dall’ottimizzazione delle sue dimensioni alla scelta dei connettori, sullo sviluppo delle schede elettroniche dedicate all’acquisizione dati e alla polarizzazione dei rivelatori con una tensione variabile per compensare le variazioni di guadagno dovute ai cambiamenti di temperatura, sulla progettazione dell’alloggiamento meccanico dello spettrometro, che è un elemento importante per garantire robustezza e facilità di gestione del sistema, sullo sviluppo del firmware e del software di controllo dello strumento e infine sulla caratterizzazione e validazione delle sue prestazioni attraverso misure sperimentali.
Development of a 3" LaBr3 SiPM-based detection module for high resolution gamma ray spectroscopy and imaging
DI VITA, DAVIDE
2018/2019
Abstract
Gamma radiation detection finds many applications in different fields, including astrophysics, medical diagnostics and nuclear physics. Nowadays large Lanthanum Bromide crystals coupled to Photomultiplier Tubes (PMTs) represent the state of the art for gamma detection modules, in particular for spectroscopic measurements. Nevertheless there is the interest in substituting photomultiplier tubes with solid state photodetectors like Silicon Photomultipliers (SiPMs) due to their significant advantages such as insensitivity to magnetic fields, low bias voltage, fast response and mechanical robustness. The aim of this thesis work, which is in the context of the GAMMA project, supported by Istituto Nazionale di Fisica Nucleare (INFN), is the design, development and experimental characterization of a -ray spectrometer based on large Lanthanum Bromide scintillator crystals coupled with Silicon Photomultipliers for nuclear physics experiments with energies ranging from 100 keV to 20MeV, characterized by state-ofthe- art energy resolutions and imaging capability in a compact, modular and robust structure. In order to perform the readout of large scintillator crystals, a matrix of 144 Silicon Photomultipliers has been designed using NUV-HD SiPMs from Fondazione Bruno Kessler (FBK), which have been chosen thanks to the high Photon Detection Efficiency in correspondence of the peak emission wavelength of the crystal, high cell density and low Dark Count Rate. This thesis work focused on the design of the SiPM tile, from the optimization of its size to the selection of connectors, on the development of the electronics boards devoted to the data acquisition and to the biasing of the detectors with a variable voltage so as to compensate gain shifts due to temperature variations, on the design of the mechanical housing of the spectrometer, which is an important element to ensure robustness and ease of handling to the system, on the development of the firmware and software controlling the instrument and finally on the characterization and validation of its performances through experimental measurements.File | Dimensione | Formato | |
---|---|---|---|
2019_04_DiVita.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
10.01 MB
Formato
Adobe PDF
|
10.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/147434