Earthquake design is a key driver in the initial planning of a structure. To date, many buildings have been designed with the simple intention of preserving life safety and this may be the cheapest option as far as initial costs are concerned, although this solution is likely to involve costly repair or rebuilding if strong earthquake does occur. DISSIPABLE project plays an important role promoting buildings equipped with low-cost, dissipative and easily replaceable components. This leads to a long-term use of structural elements which do not need to be replaced or demolished after strong earthquake events and consequently to an improvement in the sustainability of building constructions. In this thesis, four composite steel-concrete structures characterized by different geometry have been analysed. Every building is equipped with two different dissipative components: DRD3 in the Moment Resisting Frame which consist in a steel bolted splice located inside the beam of the composite slab and through which all the dissipative energy is spread; DRD1 for the Concentrically Braced Frame which consists of a pin, responsible to dissipate the seismic energy, passing through two internal plates welded to the bracings and two external plates bolted to the columns. The buildings are designed according to the provisions of Eurocode 8 for earthquake resistant structures and the regulations from DISSIPABLE project. The modelling of the buildings has been performed with the finite element software SAP2000. For the estimation of the structural behaviour of the components, a non-linear static analysis (Pushover) has been carried out. Finally, a preliminary environmental and cost analysis has been performed considering the differences between a structure equipped with dissipative components and a simple dissipative one. The results confirm that the dissipative components perform in the expected way in preserving structural members, which remain mostly elastic, while the inelastic deformations are concentrated in the DRDs giving also satisfying results in terms of costs and environmental impact.
La progettazione sismica riveste un ruolo fondamentale nella pianificazione di una struttura. Ad oggi, la maggior parte degli edifici è stata progettata con la sola intenzione di preservare la sicurezza per la vita. Questa potrebbe rivelarsi l’opzione più vantaggiosa per quanto riguarda i costi iniziali, tuttavia potrebbe comportare elevate spese di riparazione e demolizione nel caso in cui un forte terremoto colpisca la struttura. Il progetto DISSIPABLE promuove edifici equipaggiati con componenti di basso costo, caratterizzati da una elevata capacità dissipativa e facilmente riparabili. Grazie a questa soluzione, gli elementi strutturali potranno essere utilizzati a lungo termine poiché non dovranno essere sostituiti o demoliti nel caso in cui vengano colpiti da una forte scossa sismica comportando così anche un forte miglioramento nella sostenibilità dell’edificio. In questa tesi sono state analizzate quattro strutture miste acciaio-calcestruzzo caratterizzate da una diversa geometria. Ciascun edificio è stato equipaggiato con due diversi componenti: dei DRD3 posti nella struttura intelaiata che consistono in piastre bullonate alle travi del solaio che plasticizzandosi assolvono alla loro funzione dissipativa, e dei DRD1 posti nella parte controventata che consistono in un perno, responsabile di dissipare l’energia sismica, passante attraverso due piatti interni saldati ai controventi e due piatti esterni bullonati alle colonne. Gli edifici sono stati progettati secondo le prescrizioni dell’Eurocodice 8 e le linee guida del progetto DISSIPABLE. La modellazione è stata eseguita utilizzando il software agli elementi finiti Sap2000. Per la valutazione del comportamento strutturale dei componenti dissipativi è stata realizzata un’analisi statica non-lineare. Infine, è stata eseguita anche un’analisi preliminare sull’impatto ambientale e dei costi. I risultati confermano che i componenti dissipativi si comportano nella maniera prevista preservando gli elementi strutturali che rimangono principalmente in campo elastico mentre le deformazioni plastiche si concentrano nei DRDs comportando così benefici nel ciclo di vita e nei costi della struttura.
Fully dissipative and easily repairable components for resilient buildings with composite steel-concrete structures
D'ADDATO, SIMONE;ALIBERTI, SUSANNA
2017/2018
Abstract
Earthquake design is a key driver in the initial planning of a structure. To date, many buildings have been designed with the simple intention of preserving life safety and this may be the cheapest option as far as initial costs are concerned, although this solution is likely to involve costly repair or rebuilding if strong earthquake does occur. DISSIPABLE project plays an important role promoting buildings equipped with low-cost, dissipative and easily replaceable components. This leads to a long-term use of structural elements which do not need to be replaced or demolished after strong earthquake events and consequently to an improvement in the sustainability of building constructions. In this thesis, four composite steel-concrete structures characterized by different geometry have been analysed. Every building is equipped with two different dissipative components: DRD3 in the Moment Resisting Frame which consist in a steel bolted splice located inside the beam of the composite slab and through which all the dissipative energy is spread; DRD1 for the Concentrically Braced Frame which consists of a pin, responsible to dissipate the seismic energy, passing through two internal plates welded to the bracings and two external plates bolted to the columns. The buildings are designed according to the provisions of Eurocode 8 for earthquake resistant structures and the regulations from DISSIPABLE project. The modelling of the buildings has been performed with the finite element software SAP2000. For the estimation of the structural behaviour of the components, a non-linear static analysis (Pushover) has been carried out. Finally, a preliminary environmental and cost analysis has been performed considering the differences between a structure equipped with dissipative components and a simple dissipative one. The results confirm that the dissipative components perform in the expected way in preserving structural members, which remain mostly elastic, while the inelastic deformations are concentrated in the DRDs giving also satisfying results in terms of costs and environmental impact.File | Dimensione | Formato | |
---|---|---|---|
2019_04_Aliberti_DAddato.pdf
Open Access dal 30/03/2020
Descrizione: Testo della tesi
Dimensione
23.57 MB
Formato
Adobe PDF
|
23.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/147459