Additive manufacturing (AM) is one of the enabling technologies in the Industry 4.0 framework. It comprehends a series of technologies and methodologies to produce free-form structures, dramatically increasing the geometric flexibility, the customization of the part, and decreasing the materials utilization, transportation costs and lead times. One important field of the Additive manufacturing framework is the Metal additive manufacturing, that allows to fabricate parts in different types of metal by adding layers of metal powder or wire. Thanks to its geometrical precision and the variety of materials that can be used, metal additive manufacturing is utilized in precision-demanding sectors, such as biomedical and aerospace. One of the most popular typologies of metal AM is represented by Selective laser meting (SLM), a technology that allows to build a part by selectively sintering layers of metal powder with a laser source. This technology, as the other AM technologies, has its main disadvantages in the lack of process stability and repeatability. In order to overcome such disadvantages, in the last years many researches were made to monitor the process with different sensors in situ, so to detect process signatures that can be correlated to ex-situ observed defects, and create a system able to detect a defect during the creation of the part. In particular, one of the latest trends in this research field is to utilize different sensors simultaneously, so to extract the highest volume of information from the process, and evaluate possible correlations or complementary observations between what the different sensors can detect. Despite the researches efforts, metal additive manufacturing still misses a comprehensive methodology to fuse data from different sensors into a single system able to detect the defect creation in real-time. In this framework, this thesis aims to investigate possible ways to monitor a selective melting process with an unprecedented (to the author’s knowledge) combination of sensors: a high resolution camera, a high speed camera, and a thermal IR camera. The main objective is to extract from each sensor some signatures that can tell something about the process, and then to understand if the two sensors acquiring videos (the high speed and thermal IR camera) are observing the same signature in the same way, or if two different signatures are somehow correlated between them. The case study is focused on an experimentation made on January 31st, 2019 on a SLM prototype in the Add.Me laboratory of Politecnico di Milano mechanical department. The experimentation consists of three specimens of Stainless steel with different geometries, for a total height of 200 layers.
La manifattura additiva (AM) è una delle tecnologie abilitanti nel contesto dell’industria 4.0. comprende una serie di tecnologie e metodologie per produrre strutture senza vincoli di forma, aumentando notevolmente la flessibilità geometrica, la personalizzazione del pezzo, e diminuendo l’utilizzo di materiali, i costi di trasporto ed il lead time totale. Un importante campo della manifattura additiva è rappresentata dalla produzione in metallo, che permette di fabbricare pezzi in diversi tipi di metallo aggiungendo materiale sotto forma di strati o filamenti. Grazie alla sua precisione geometrica ed alla varietà di materiali che possono essere utilizzati, l’additive manufacturing metallico è utilizzato in settori dove è richiesta una grande precisione, come l’aerospaziale ed il biomedico. Una delle tipologie più popolari di manifattura additiva in metallo è rappresentata dal Selective Laser Melting (SLM), una tecnologia che permette di produrre pezzi sinterizzando strati di polvere metallica con una fonte laser. Questa tecnologia, come le altre tipologie di AM, ha come principali svantaggi una bassa stabilità e ripetibilità di processo. Per superare questi svantaggi, negli ultimi anni sono stati fatti molti studi per monitorare il processo in situ con differenti sensori, in modo da individuare segnali che possano essere correlati con difetti osservati ex-situ, e creare un sistema capace di individuare la presenza di un difetto durante la produzione del pezzo. In particolare, uno degli ultimi trend in questo campo di ricerca è quello di utilizzare più sensori contemporaneamente, in modo da estrarre il massimo volume di informazioni dal processo, e valutare possibili correlazioni od osservazioni complementari tra ciò che i diversi sensori possono identificare. Nonostante gli sforzi nelle ricerche, l’additive manufacturing con metallo manca ancora di una metodologia comprensiva di fusione di dati da differenti sensori in un singolo sistema capace di individuare in tempo reale la creazione di un difetto. In questo contesto, la tesi punta ad investigare possibili metodi per monitorare un processo SLM con una combinazione inedita di sensori: una camera ad alta risoluzione, una camera ad alta velocità, ed una camera termica. L’obiettivo principale è quello di estrarre da ciascun sensore alcuni segnali che possano raccontare qualcosa sul processo, e successivamente capire se i due sensori che acquisiscono i dati in forma di video (la camera termica e quella ad alta velocità) stiano osservando gli stessi segnale nello stesso modo, o se siano in qualche modo correlati tra loro. Il caso studio è focalizzato su una sperimentazione fatta il 31 Gennaio 2019 con un prototipo SLM presso il laboratorio Add.Me situato nel dipartimento di ingegneria meccanica del Politecnico di Milano. La sperimentazione consiste di tre provini in acciaio inossidabile con differenti geometrie, per un’altezza totale di 200 strati.
Multisensor monitoring approaches in selective laser melting processes : an explorative analysis
CLEMENTI, MARCO
2017/2018
Abstract
Additive manufacturing (AM) is one of the enabling technologies in the Industry 4.0 framework. It comprehends a series of technologies and methodologies to produce free-form structures, dramatically increasing the geometric flexibility, the customization of the part, and decreasing the materials utilization, transportation costs and lead times. One important field of the Additive manufacturing framework is the Metal additive manufacturing, that allows to fabricate parts in different types of metal by adding layers of metal powder or wire. Thanks to its geometrical precision and the variety of materials that can be used, metal additive manufacturing is utilized in precision-demanding sectors, such as biomedical and aerospace. One of the most popular typologies of metal AM is represented by Selective laser meting (SLM), a technology that allows to build a part by selectively sintering layers of metal powder with a laser source. This technology, as the other AM technologies, has its main disadvantages in the lack of process stability and repeatability. In order to overcome such disadvantages, in the last years many researches were made to monitor the process with different sensors in situ, so to detect process signatures that can be correlated to ex-situ observed defects, and create a system able to detect a defect during the creation of the part. In particular, one of the latest trends in this research field is to utilize different sensors simultaneously, so to extract the highest volume of information from the process, and evaluate possible correlations or complementary observations between what the different sensors can detect. Despite the researches efforts, metal additive manufacturing still misses a comprehensive methodology to fuse data from different sensors into a single system able to detect the defect creation in real-time. In this framework, this thesis aims to investigate possible ways to monitor a selective melting process with an unprecedented (to the author’s knowledge) combination of sensors: a high resolution camera, a high speed camera, and a thermal IR camera. The main objective is to extract from each sensor some signatures that can tell something about the process, and then to understand if the two sensors acquiring videos (the high speed and thermal IR camera) are observing the same signature in the same way, or if two different signatures are somehow correlated between them. The case study is focused on an experimentation made on January 31st, 2019 on a SLM prototype in the Add.Me laboratory of Politecnico di Milano mechanical department. The experimentation consists of three specimens of Stainless steel with different geometries, for a total height of 200 layers.| File | Dimensione | Formato | |
|---|---|---|---|
|
2019_04_Clementi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
5.72 MB
Formato
Adobe PDF
|
5.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/147869