This thesis work is focused on the production of solid oxide fuel cells based on YSZ powders through the method called Tape Casting. Fuel cells are devices able to produce electricity through a direct conversion of the chemical energy present in the fuel fed to the cell. The Tape Casting technique makes it possible to obtain very thin layers that reduce the total resistance of the cell and increase its performance. The difficulties of this process consist in finding the correct formulation as the powders are mixed with many other components mainly solvents, binders and plasticizers. Each of these components plays a key role in the correct formulation since the optimal quantities must be found otherwise the cells obtained after the calcination step would have many defects such as breaks or curvatures. The originality of this work is to have optimized and standardize the preparation starting from a recipe that did not present the desired characteristics. After obtaining the basic structure of the cell, the goal is to infiltrate it with the LSF-based cathode. This innovative method consists in depositing a solution of metal nitrates inside the porous cell layers that will form the perovskite phase after a suitable temperature profile. The originality during the infiltration of LSF is to have added citric acid in the preparation of the solution containing the nitrates of lanthanum, iron and strontium. The benefits of this component consist in forming complexes agent with metal ions, preventing stratification and promoting homogeneity and it also acts as a fuel during the redox reaction that is developed within the pores of the structure in the presence of metal nitrates. Symmetrical LSF-YSZ/YSZ/YSZ-LSF cells were produced, all with approximately the same amount of cathode in the structure by varying the calcination temperature to produce the active phase. Three cells were calcined at three different temperatures: 850°C, 950°C and 1050°C to analyze which had the lowest polarization resistance in order to have a more performing cathode. Each cell was analyzed though electrochemical impedance spectroscopy test at three different temperatures: 750°C, 700°C and 650°C. Furthermore, for each temperature four different test were carried out varying the partial pressure of the oxygen passing from pure oxygen, air and finally to 10% and 5% of oxygen diluted in nitrogen or helium to study possible diffusive limitations. The data obtained from the impedances were analyzed using an Equivalent Circuit Model (ECM) in order to establish which is the rate determining step of the whole cathodic process. Furthermore, the data obtained from the impedances were analyzed using Arrhenius-type diagrams in order to establish the performance of the electrolyte, of the cathode and to find the reaction order of oxygen.
Questo lavoro di tesi è focalizzato sulla produzione di celle a combustibile a ossido solido basate su polveri YSZ attraverso il metodo denominato Tape Casting. Le celle a combustibile sono dispositivi in grado di produrre elettricità attraverso una conversione diretta dell’energia chimica presente nel combustibile alimentato alla cella. La tecnica del Tape Casting consente di ottenere strati molto sottili che riducono la resistenza totale della cella aumentandone le prestazioni. Le difficoltà di questo processo consistono nel trovare la formulazione corretta in quanto le polveri sono mescolate con molti altri componenti come ad esempio solventi, leganti e plasticizzanti. Ognuno di questi componenti svolge un ruolo fondamentale nella corretta formulazione poiché si devono trovare le quantità ottimali per ogni singolo componente altrimenti le celle ottenute dopo lo step di calcinazione avrebbero molti difetti come delle rotture o delle curvature rendendole inutilizzabili. L'originalità di questo lavoro è di aver ottimizzato e standardizzato la preparazione partendo da una ricetta che non presentava le caratteristiche desiderate. Dopo aver ottenuto la struttura di base della cella, l'obiettivo è infiltrarla con il catodo LSF. Questo metodo innovativo consiste nel depositare una soluzione di nitrati metallici all'interno degli strati porosi della cella che successivamente formeranno la fase perovskite dopo un profilo di temperatura adatto. L'originalità nell'infiltrazione di LSF è di aver aggiunto acido citrico durante la preparazione della soluzione contenente i nitrati di lantanio, ferro e stronzio. I vantaggi di questo componente consistono nella formazione di agenti complessi con ioni metallici, impedendo la stratificazione e promuovendo l'omogeneità ed inoltre agisce anche come combustibile durante la reazione redox che si sviluppa all'interno dei pori della struttura in presenza di cationi metallici. Sono state prodotte celle simmetriche LSF-YSZ / YSZ / YSZ-LSF, tutte con approssimativamente la stessa quantità di catodo nella struttura variando la temperatura di calcinazione per produrre la fase attiva. Tre celle sono state calcinate a tre diverse temperature: 850°C, 950°C e 1050°C per analizzare quale abbia la resistenza di polarizzazione più bassa per avere un catodo più performante. Ogni cella è stata analizzata mediante test di spettroscopia di impedenza elettrochimica a tre diverse temperature: 750°C, 700°C e 650°C. Inoltre, per ciascuna temperatura sono stati eseguiti quattro test differenti variando la pressione parziale dell'ossigeno che passa da ossigeno puro, ad aria e infine al 10% e al 5% di ossigeno diluito in azoto o elio per studiare possibili limitazioni diffusive. I dati ottenuti dalle impedenze sono stati analizzati utilizzando un modello dei circuiti equivalenti (Equivalenti Circuit Model ECM) al fine di stabilire quale sia il rate determining step dell’intero processo catodico. Inoltre, i valori delle impedenze sono stati analizzati utilizzando diagrammi di tipo Arrhenius al fine di stabilire le prestazioni dell’elettrolita, del catodo e di trovare l’ordine di reazione dell’ossigeno.
Preparation, characterization and testing of YSZ-based symmetric cells with LSF cathodes
BRAMBILLA, CORRADO
2018/2019
Abstract
This thesis work is focused on the production of solid oxide fuel cells based on YSZ powders through the method called Tape Casting. Fuel cells are devices able to produce electricity through a direct conversion of the chemical energy present in the fuel fed to the cell. The Tape Casting technique makes it possible to obtain very thin layers that reduce the total resistance of the cell and increase its performance. The difficulties of this process consist in finding the correct formulation as the powders are mixed with many other components mainly solvents, binders and plasticizers. Each of these components plays a key role in the correct formulation since the optimal quantities must be found otherwise the cells obtained after the calcination step would have many defects such as breaks or curvatures. The originality of this work is to have optimized and standardize the preparation starting from a recipe that did not present the desired characteristics. After obtaining the basic structure of the cell, the goal is to infiltrate it with the LSF-based cathode. This innovative method consists in depositing a solution of metal nitrates inside the porous cell layers that will form the perovskite phase after a suitable temperature profile. The originality during the infiltration of LSF is to have added citric acid in the preparation of the solution containing the nitrates of lanthanum, iron and strontium. The benefits of this component consist in forming complexes agent with metal ions, preventing stratification and promoting homogeneity and it also acts as a fuel during the redox reaction that is developed within the pores of the structure in the presence of metal nitrates. Symmetrical LSF-YSZ/YSZ/YSZ-LSF cells were produced, all with approximately the same amount of cathode in the structure by varying the calcination temperature to produce the active phase. Three cells were calcined at three different temperatures: 850°C, 950°C and 1050°C to analyze which had the lowest polarization resistance in order to have a more performing cathode. Each cell was analyzed though electrochemical impedance spectroscopy test at three different temperatures: 750°C, 700°C and 650°C. Furthermore, for each temperature four different test were carried out varying the partial pressure of the oxygen passing from pure oxygen, air and finally to 10% and 5% of oxygen diluted in nitrogen or helium to study possible diffusive limitations. The data obtained from the impedances were analyzed using an Equivalent Circuit Model (ECM) in order to establish which is the rate determining step of the whole cathodic process. Furthermore, the data obtained from the impedances were analyzed using Arrhenius-type diagrams in order to establish the performance of the electrolyte, of the cathode and to find the reaction order of oxygen.File | Dimensione | Formato | |
---|---|---|---|
Tesi Corrado Brambilla.pdf
non accessibile
Descrizione: Tesi magistrale di Corrado Brambilla
Dimensione
8.01 MB
Formato
Adobe PDF
|
8.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/147885