Metamaterials are artificial structures that exhibit properties that their constitutive materials do not. Among all types of metamaterials, Phononic Crystals (PnCs) are a particular class, characterized by the repetition in space of a unit cell to define a periodic structure; an interesting property of PnCs is the ability to create bandgaps, ranges of frequencies in which waves are not able to propagate, being therefore useful for vibration suppression. In this thesis, ground-borne vibrations induced by railway traffic are studied, along with the most common available solutions to reduce the effects of this phenomenon; the main aim of this work is the development of another solution for vibration isolation based on metamaterials. In order to do so, a new unit cell made of steel and concrete is analyzed from the dynamic point of view by means of numerical FEM models with the commercial software COMSOL Multiphysics, showing the generation of a bandgap; this result is then confirmed experimentally by means of a transmissibility analysis. Then, a prefabricated solution consisting in a cluster of unit cells, with a view to ease the construction was also studied experimentally, in order to corroborate the suppression capacity of the module. Finally, this whole structure was studied from the static perspective by means of a simpler FEM model developed in the commercial software Straus7, to analyze its behaviour and confirm the safeness of the construction using the italian code NTC-2018.
I metamateriali sono strutture artificiali che mostrano proprietà che i loro materiali costitutivi non hanno. Tra tutti i tipi di metamateriali, i cristalli fononici rappresentano una classe particolare, caratterizzata dalla ripetizione nello spazio di una cella unitaria per definire una struttura periodica; una proprietà interessante dei cristalli fononici è la capacità di creare bandgaps, intervalli di frequenze in cui le onde non sono in grado di propagarsi, quindi utili per la soppressione delle vibrazioni. In questa tesi si studiano le vibrazioni indotte dal traffico ferroviario e le più comuni soluzioni disponibili per ridurre gli effetti di questo fenomeno; l'obiettivo principale di questo lavoro è lo sviluppo di una soluzione alternativa per l'isolamento delle vibrazioni a base di metamateriali. Per fare ciò, una nuova cella unitaria in acciaio e calcestruzzo viene analizzata dal punto di vista dinamico con modelli numerici FEM mediante l’impiego del software commerciale COMSOL Multiphysics, che mostra la generazione di un bandgap; questo risultato viene poi confermato sperimentalmente mediante un'analisi di trasmissibilità. E' stata poi studiata sperimentalmente anche una soluzione prefabbricata costituita da un gruppo di celle unitarie, al fine di facilitarne la costruzione, per validare la capacità di soppressione del modulo. Infine, l'intera struttura è stata studiata dal punto di vista statico attraverso un modello FEM semplificato, sviluppato con il software commerciale Straus7, per analizzarne il comportamento e confermare la sicurezza della costruzione secondo il codice NTC-2018.
Metamaterials for vibration control : an application for isolation of railway-induced vibrations
RAMÍREZ MARTÍNEZ, JAVIER ÁNGEL
2018/2019
Abstract
Metamaterials are artificial structures that exhibit properties that their constitutive materials do not. Among all types of metamaterials, Phononic Crystals (PnCs) are a particular class, characterized by the repetition in space of a unit cell to define a periodic structure; an interesting property of PnCs is the ability to create bandgaps, ranges of frequencies in which waves are not able to propagate, being therefore useful for vibration suppression. In this thesis, ground-borne vibrations induced by railway traffic are studied, along with the most common available solutions to reduce the effects of this phenomenon; the main aim of this work is the development of another solution for vibration isolation based on metamaterials. In order to do so, a new unit cell made of steel and concrete is analyzed from the dynamic point of view by means of numerical FEM models with the commercial software COMSOL Multiphysics, showing the generation of a bandgap; this result is then confirmed experimentally by means of a transmissibility analysis. Then, a prefabricated solution consisting in a cluster of unit cells, with a view to ease the construction was also studied experimentally, in order to corroborate the suppression capacity of the module. Finally, this whole structure was studied from the static perspective by means of a simpler FEM model developed in the commercial software Straus7, to analyze its behaviour and confirm the safeness of the construction using the italian code NTC-2018.File | Dimensione | Formato | |
---|---|---|---|
Ramirez_LMIngegneriaCivileTesi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
123.69 MB
Formato
Adobe PDF
|
123.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/147947