The present thesis treats the development and validation of a nonlinear dynamic model for an unmanned rotorcraft. The model, implemented in the Simulink-Matlab environment, receives as input the collective, tail and cyclic commands generated by the controller or by the pilot through the radio control and provides as output the velocities, positions and attitude of the aircraft. In the first part of the thesis, the implementation of the model is described. The model is organized as a cascade block diagram composed by four blocks: the first one contains the servo model, which computes the collective and cyclic pitch variation on the blades depending on the commands received; the second block includes the rotor dynamics, and provides the angle of attack, the airspeed and the acceleration of the blade; the third block computes the forces generated on the rotorcraft and the fourth block contains the rigid body motion equations. A particular attention in the thesis is dedicated to the rotor aerodynamics, with a discussion on the inflow models coming from the momentum theory, the BEMT (Blade Element Momentum Theory) and the Pitt-Peters dynamic inflow theory. The BET (Blade Element Theory) is used to compute the blade forces and moments. The flapping dynamics modelling is widely treated, along with experimental methods to obtain the flapping hinge offset and the flapping frequency. In the second part of the thesis the process of validation carried out with closed-loop simulations is described. The results of the simulations are compared to the ones of the linear in-flight identified model of the helicopter. The simulations provide satisfactory results comparable to the ones provided by the identified model except for some aspects as the emphasized oscillations or greater roll angle in all the phases of the mission simulated. These discrepancies lead to the production of some recommendations for the future developments of the model.
In questa tesi viene trattato lo sviluppo del modello non lineare della dinamica di un elicottero a pilotaggio remoto, utilizzabile anche per il volo automatico. Il modello, implementato in ambiente Simulink-Matlab, riceve in ingresso i comandi di collettivo, ciclico e coda generati dal controllore o dal pilota tramite il radiocomando e fornisce in uscita la posizione, la velocità e l'assetto del velivolo. Nella prima parte della tesi è descritta la realizzazione del modello. Il modello è organizzato sotto forma di schema a blocchi in cascata composto da quattro sistemi: il primo contiene il modello del cinematismo degli attuatori che convertono i comandi in variazioni del passo delle pale; il secondo contiene la dinamica del rotore, e fornisce in uscita l'angolo di incidenza, la velocità all'aria e le accelerazioni degli elementi di pala; nel terzo blocco vengono modellate le forze ed i momenti trasmessi al corpo dell'elicottero e nel quarto sono contenute le equazioni del corpo rigido per la dinamica del velivolo. Una particolare attenzione in questo lavoro di tesi è dedicata alla modellazione dell'aerodinamica del rotore, con una trattazione sui modelli di influsso provenienti dalla Momentum Theory, dalla BEMT ( Blade Element Momentum Theory) e dalla teoria dell'influsso dinamico di Pitt e Peters. La BET (Blade Element Theory) è utilizzata per modellare le forze ed i momenti di pala. La dinamica del flappeggio è trattata ampiamente, insieme a metodi sperimentali per determinare la posizione della cerniera di flappeggio e la frequenza naturale del fenomeno. Nella seconda parte della tesi si descrive il processo di validazione tramite simulazioni in anello chiuso col controllore, i cui risultati vengono comparati con quelli del modello lineare del velivolo identificato tramite prove di volo. Le simulazioni danno risultati soddisfacenti e confrontabili con quelli del modello identificato, tranne per alcuni aspetti quali oscillazioni più accentuate ed un angolo di rollio maggiore in tutte le fasi della missione simulata. Queste discrepanze conducono all'elaborazione di alcune raccomandazioni per gli sviluppi futuri del modello.
Nonlinear dynamic model of an unmanned rotorcraft : implementation and validation
RONCOLINI, FRANCESCA
2018/2019
Abstract
The present thesis treats the development and validation of a nonlinear dynamic model for an unmanned rotorcraft. The model, implemented in the Simulink-Matlab environment, receives as input the collective, tail and cyclic commands generated by the controller or by the pilot through the radio control and provides as output the velocities, positions and attitude of the aircraft. In the first part of the thesis, the implementation of the model is described. The model is organized as a cascade block diagram composed by four blocks: the first one contains the servo model, which computes the collective and cyclic pitch variation on the blades depending on the commands received; the second block includes the rotor dynamics, and provides the angle of attack, the airspeed and the acceleration of the blade; the third block computes the forces generated on the rotorcraft and the fourth block contains the rigid body motion equations. A particular attention in the thesis is dedicated to the rotor aerodynamics, with a discussion on the inflow models coming from the momentum theory, the BEMT (Blade Element Momentum Theory) and the Pitt-Peters dynamic inflow theory. The BET (Blade Element Theory) is used to compute the blade forces and moments. The flapping dynamics modelling is widely treated, along with experimental methods to obtain the flapping hinge offset and the flapping frequency. In the second part of the thesis the process of validation carried out with closed-loop simulations is described. The results of the simulations are compared to the ones of the linear in-flight identified model of the helicopter. The simulations provide satisfactory results comparable to the ones provided by the identified model except for some aspects as the emphasized oscillations or greater roll angle in all the phases of the mission simulated. These discrepancies lead to the production of some recommendations for the future developments of the model.File | Dimensione | Formato | |
---|---|---|---|
tesi roncolini francesca.pdf
accessibile in internet per tutti
Descrizione: tesi definitiva
Dimensione
22.02 MB
Formato
Adobe PDF
|
22.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/148390