Solution-processable high mobility semiconductors, such as polymers and single-walled carbon nanotubes (s-SWCNTs), offer a concrete opportunity to develop high performance electronics integrable in novel large-area and lowcost technological applications, ranging from flexible and wearable devices to soft bioelectronics and biosensors. The possibility to formulate stable dispersions of carbon nanotubes by noncovalent functionalization through conjugated polymers allows the adoptin of solution-based printing deposition techniques, cheap and suitable for scalable fabrication processes. A deep knowledge of charge transport mechanisms in s-SWCNTs networks is crucial in order to address an efficient processing and realize high-performance devices and circuitry. Unfortunately, it is still unclear how the polydispersity of the semiconducting nanotubes and their interaction with the functionalizing polymer affect charge injection and transport in such networks. The interest in unraveling the dynamics of transport to enhance the devices’ figures of merit is transversal to multiple fields, as carbon nanotubes networks can be employed also for bio sensing, thanks to their excellent stability in aqueous environments and biocompatibility, making them ideal candidates for developing a pervasive bridging technology for a variety of applications both in vitro and in vivo. This dissertation reports the investigation of charge transport dynamics in printed SWCNTs-based transistors and their application as cell-proliferation monitors. Charge accumulation and transport are first studied in monochiral and mixed networks of carbon nanotubes using charge-modulation spectroscopy, a technique ideally suited to study the nature and distribution of mobile carriers in working transistors. In agreement with previous experimental and theoretical studies, the mobile carrier distribution changes with applied gate voltage. Subsequently, several analytical tools were employed to assess the impact of network density and functionalizing polymer on charge transport mechanisms in inkjet printed networks of polymer-wrapped nanotubes, demonstrating the possibility to tune their ambipolar behavior and their charge transport efficiency by tailoring the printing process. Our findings provide useful insights on the mutual interplay between polymer and nanotubes, as well as on the dynamics of charge redistribution on the SWCNTs chiralities upon changes in network density. We then propose a practical application for such networks, introducing carbon nanotube based electrolyte-gated transistors as a novel tool to electrically monitor cell adherence and proliferation, able to operate consistently in aqueous environment and in conjunction with more established optical techniques. By establishing a direct relation between presence of adhered cells and electrical output, we demonstrate that carbon-based electrolytegated transistors constitute a promising technology to perform large-scale and cost-effective in vitro monitoring for toxicology and drug development applications.
Semiconduttori ad alta mobilità processabili per soluzione, come polimeri e nanotubi di carbonio a parete singola (s-SWCNT), offrono un'opportunità concreta per lo svilupppo di elettronica ad alte prestazioni integrabile in nuove applicazioni tecnologiche a basso costo e su grande area. La possibilità di formulare dispersioni stabili di nanotubi mediante la loro funzionalizzazione con polimeri coniugati consente l'adozione di tecniche di deposizione di stampa basate su soluzioni, economiche e adatte per la scalabilità dei processi di fabbricazione. Una profonda conoscenza dei meccanismi di trasporto delle cariche nei network di s-SWCNT è fondamentale per individuare un processo di fabbricazione efficiente e quindi realizzare dispositivi e circuiti con prestazioni elevate. Sfortunatamente, non è ancora chiaro come la polidispersione delle chiralità di nanotubi e la loro interazione con il il polimero funzionalizzante influenzi l'iniezione di carica e il trasporto in tali network. L'interesse nel comprendere le dinamiche del trasporto per migliorare le figure di merito dei dispositivi è trasversale a più campi di applicazione, visto che l'eccellente stabilità in ambienti acquosi e la biocompatibilità dei nanotubi li rende candidati ideali anche per applicazioni di bio-sensing, sia in vitro che in vivo. Questa dissertazione riporta l'analisi delle dinamiche di trasporto di carica in transistori stampati basati su reti di SWCNT e la loro applicazione come monitor per la proliferazione cellulare. L'accumulo e il trasporto della carica in reti miste di nanotubi sono stati investigati per la prima volta mediante spettroscopia di modulazione della carica, una tecnica ideale per studiare la natura e la distribuzione delle cariche mobili nei transistor funzionanti. Diversi strumenti analitici sono successivamente stati impiegati per valutare l'impatto della densità del network e del polimero funzionalizzante sui meccanismi di trasporto di carica in reti stampate a getto d'inchiostro, dimostrando la possibilità di modulare il loro comportamento ambipolare e la loro efficienza di trasporto di carica modificando il processo di stampa. I risultati forniscono spunti utili sulla reciproca interazione tra polimero e nanotubi, nonché sulle dinamiche della ridistribuzione delle cariche nelle diverse chiralità di SWCNT presenti, in seguito a cambiamenti nella densità di rete. E' stata poi proposta un'applicazione pratica per tali reti, introducendo transistor elettrolitici a base di nanotubi di carbonio come un nuovo strumento per monitorare elettricamente l'adesione e la proliferazione cellulare, in grado di operare in modo consistente in ambiente acquoso e compatibile con tecniche ottiche consolidate. Stabilendo una relazione diretta tra la presenza di aderito cellule e output elettrico, in questo lavoro viene dimostrata la potenzialità dei transistor elettrolitici a base di SWCNTs per eseguire monitoraggio in vitro a basso costo e su larga scala, per applicazioni tossicologiche e per lo sviluppo di nuovi farmaci.
Printed carbon nanotubes based transistors: from charge transport studies to biosensing applications
SCURATTI, FRANCESCA
Abstract
Solution-processable high mobility semiconductors, such as polymers and single-walled carbon nanotubes (s-SWCNTs), offer a concrete opportunity to develop high performance electronics integrable in novel large-area and lowcost technological applications, ranging from flexible and wearable devices to soft bioelectronics and biosensors. The possibility to formulate stable dispersions of carbon nanotubes by noncovalent functionalization through conjugated polymers allows the adoptin of solution-based printing deposition techniques, cheap and suitable for scalable fabrication processes. A deep knowledge of charge transport mechanisms in s-SWCNTs networks is crucial in order to address an efficient processing and realize high-performance devices and circuitry. Unfortunately, it is still unclear how the polydispersity of the semiconducting nanotubes and their interaction with the functionalizing polymer affect charge injection and transport in such networks. The interest in unraveling the dynamics of transport to enhance the devices’ figures of merit is transversal to multiple fields, as carbon nanotubes networks can be employed also for bio sensing, thanks to their excellent stability in aqueous environments and biocompatibility, making them ideal candidates for developing a pervasive bridging technology for a variety of applications both in vitro and in vivo. This dissertation reports the investigation of charge transport dynamics in printed SWCNTs-based transistors and their application as cell-proliferation monitors. Charge accumulation and transport are first studied in monochiral and mixed networks of carbon nanotubes using charge-modulation spectroscopy, a technique ideally suited to study the nature and distribution of mobile carriers in working transistors. In agreement with previous experimental and theoretical studies, the mobile carrier distribution changes with applied gate voltage. Subsequently, several analytical tools were employed to assess the impact of network density and functionalizing polymer on charge transport mechanisms in inkjet printed networks of polymer-wrapped nanotubes, demonstrating the possibility to tune their ambipolar behavior and their charge transport efficiency by tailoring the printing process. Our findings provide useful insights on the mutual interplay between polymer and nanotubes, as well as on the dynamics of charge redistribution on the SWCNTs chiralities upon changes in network density. We then propose a practical application for such networks, introducing carbon nanotube based electrolyte-gated transistors as a novel tool to electrically monitor cell adherence and proliferation, able to operate consistently in aqueous environment and in conjunction with more established optical techniques. By establishing a direct relation between presence of adhered cells and electrical output, we demonstrate that carbon-based electrolytegated transistors constitute a promising technology to perform large-scale and cost-effective in vitro monitoring for toxicology and drug development applications.File | Dimensione | Formato | |
---|---|---|---|
Scuratti_PhD_Dissertation.pdf
solo utenti autorizzati dal 05/07/2022
Descrizione: Testo della tesi
Dimensione
6.47 MB
Formato
Adobe PDF
|
6.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/148433