Ammonia has recently gained interest as a carbon-free fuel and as an effective energy carrier, with better storage and transport capabilities with respect to pure hydrogen. In order to address issues like NOx emissions and low reactivity, a comprehensive understanding of the reaction kinetics is necessary for accurate CFD simulations of combustion devices, and their optimal design. The purpose of the present Thesis is the development of a detailed kinetic mechanism able to predict the combustion of ammonia, including decomposition of ammonia through pyrolysis and oxidation, NH2 and NH reactions, formation of NOx, low temperature pathways involving NO removal processes such as Thermal-DeNOx, and NNH and H2NO subsets. The mechanism is then validated against several experimental data, and sensitivity and reaction fluxes analyses are performed to get a better insight on the kinetics. The results showed that the best conditions minimizing NOx emissions from ammonia combustion can be found at low temperature and slightly fuel-rich conditions, so that NO+NH2 reactions are favoured and the NH3 slip is minimized. The oxidation mechanism of ammonia is also involved in the biomass combustion, an important nitrogen-containing fuel that is employed in thermal power plants, like grate firing furnaces. Once the detailed mechanism is developed, its simplification is often necessary in order to reduce the computational time and make the mechanism more useful for practical applications. Therefore, this work is complemented by the study included in the GrateCFD project, conducted by SINTEF and NTNU University, about the automatic reduction of detailed kinetic mechanism. The reduction method consists in a combined reaction flow and sensitivity analysis, resulting in a necessity index, ranking all chemical species for automatic reduction. Here, this approach is applied to biomass combustion, in the context of grate furnace plants design and optimization.
L’ammoniaca è oggetto di un crescente interesse come combustibile a zero emissioni di carbonio e come energy carrier, essendo caratterizzata da una maggiore facilità di trasporto e stoccaggio rispetto all’idrogeno puro. Una conoscenza completa della cinetica di reazione è necessaria per svolgere simulazioni CFD accurate e ottimizzare i dispositivi di combustione, tenendo conto del rischio di emissioni di ossidi di azoto e della bassa reattività del combustibile. Lo scopo di questa Tesi è sviluppare un meccanismo cinetico dettagliato in grado di descrivere la combustione dell’ammoniaca, contenente il meccanismo di decomposizione attraverso pirolisi e ossidazione, le reazioni degli intermedi NH2 ed NH, la formazione degli NOx, i cammini di reazione rilevanti a bassa temperatura, compresi nei processi di riduzione degli NOx come il Thermal-DeNOx, e i sotto-meccanismi di NNH e H2NO. Il meccanismo ottenuto è poi validato tramite un ampio set di dati sperimentali. In questo contesto, analisi di sensitività e flusso di reazione sono impiegate allo scopo di approfondire la cinetica e individuare le condizioni migliori per minimizzare le emissioni di NOx e l’ammoniaca non reagita. Condizioni leggermente riducenti e a bassa temperatura sono consigliate, così da favorire lo step chiave della reazione di NH2 con NO. Il meccanismo di ossidazione dell’ammoniaca è coinvolto nella combustione della biomassa, un combustibile rinnovabile utilizzato in impianti termici di potenza e caratterizzato da un contenuto non trascurabile di specie azotate. Nel caso di applicazioni pratiche, semplificare il meccanismo cinetico dettagliato è spesso necessario allo scopo di ridurre il tempo computazionale. Di conseguenza, questo lavoro è completato da uno studio nell’ambito del progetto GrateCFD, condotto da SINTEF e dall’Università NTNU, sulla riduzione automatica del meccanismo dettagliato. Il metodo impiegato si basa sull’utilizzo combinato di analisi di sensitività e flusso di reazione per classificare le specie in ordine di importanza, allo scopo di ridurre le dimensioni del meccanismo senza perdere accuratezza.
Kinetic modeling of ammonia pyrolysis and oxidation
VANTAGGIATO, ELETTRA
2018/2019
Abstract
Ammonia has recently gained interest as a carbon-free fuel and as an effective energy carrier, with better storage and transport capabilities with respect to pure hydrogen. In order to address issues like NOx emissions and low reactivity, a comprehensive understanding of the reaction kinetics is necessary for accurate CFD simulations of combustion devices, and their optimal design. The purpose of the present Thesis is the development of a detailed kinetic mechanism able to predict the combustion of ammonia, including decomposition of ammonia through pyrolysis and oxidation, NH2 and NH reactions, formation of NOx, low temperature pathways involving NO removal processes such as Thermal-DeNOx, and NNH and H2NO subsets. The mechanism is then validated against several experimental data, and sensitivity and reaction fluxes analyses are performed to get a better insight on the kinetics. The results showed that the best conditions minimizing NOx emissions from ammonia combustion can be found at low temperature and slightly fuel-rich conditions, so that NO+NH2 reactions are favoured and the NH3 slip is minimized. The oxidation mechanism of ammonia is also involved in the biomass combustion, an important nitrogen-containing fuel that is employed in thermal power plants, like grate firing furnaces. Once the detailed mechanism is developed, its simplification is often necessary in order to reduce the computational time and make the mechanism more useful for practical applications. Therefore, this work is complemented by the study included in the GrateCFD project, conducted by SINTEF and NTNU University, about the automatic reduction of detailed kinetic mechanism. The reduction method consists in a combined reaction flow and sensitivity analysis, resulting in a necessity index, ranking all chemical species for automatic reduction. Here, this approach is applied to biomass combustion, in the context of grate furnace plants design and optimization.File | Dimensione | Formato | |
---|---|---|---|
ElettraVantaggiato_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
3.93 MB
Formato
Adobe PDF
|
3.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/148474