Releases of methane are a common accident cause in process industry. High-pressure methane jets, which can be ignited, are affected by the presence of obstacles, which can influence cloud extension and consequently the safe area for people and process components. In this work it is presented a realistic case study which shown the interaction between a high-pressure methane jet and an obstacle constituted by a spherical tank positioned in front of the jet source. The purposes are to: at first, identify the geometrical parameters for this scenario which can affect the extension of the lower flammability limit cloud and, then, develop a criterion allowing the prediction of the tank behaviour with respect to the jet cloud: when the tank blocks the jet (namely, wall effect) and when the jet goes beyond the tank (namely, obstacle effect). Furthermore, another important wanted result was to derive an analytical correlation which allows to predict the maximum axial extent of the lower flammability limit cloud. At the end, it was identified the tank legs influence on the flammable cloud extension. In order to study the effect caused by the presence of the obstacle, it was necessary the use of Computational Fluid Dynamics that can properly consider the presence of an obstacle. To do this, the entire scenario was modelled with the widely used commercial software ANSYS® Fluent®.
I rilasci di metano sono una comune causa incidentale nell’industria di processo. Questi rilasci ad alta pressione, potenzialmente innescabili, vengono alterati dalla presenza di ostacoli, i quali possono influenzare l’estensione della nube e di conseguenza la zona di sicurezza per le persone e i componenti del processo. In questo lavoro viene presentato un caso studio realistico che mostra l’interazione tra un getto di metano ad alta pressione e un ostacolo, costituito da un serbatoio sferico, posizionato di fronte alla sorgente di rilascio del getto. Gli obiettivi di questo lavoro sono: identificare i parametri geometrici che, per lo scenario considerato, possono alterare l’estensione della nube di metano potenzialmente infiammabile, e, dopodiché, sviluppare un criterio che permettesse di predire il comportamento del serbatoio in relazione alla nube: quando il serbatoio blocca la nube (definito effetto muro) e quando la nube oltrepassa il serbatoio (definito effetto ostacolo) Inoltre, è stata , ricavata una correlazione analitica che consenta di predire la massima estensione assiale della nube a concentrazione pari al limite inferiore di infiammabilità. Infine, è stato identificato l’effetto che le gambe del serbatoio hanno sull’estensione della nube. Per studiare questi effetti, causati dalla presenza di ostacoli, è stato quindi necessario l’utilizzo della fluidodinamica computazionale, la quale è in grado di descrivere l’influenza di un ostacolo. A tale scopo, l’intero scenario è stato investigato usando il software di fluidodinamica computazionale ANSYS® Fluent®.
High-pressure jet impinging a spherical tank : CFD analysis of an industrial case study
PARISI, ANDREA;CARMINATI, EDOARDO
2018/2019
Abstract
Releases of methane are a common accident cause in process industry. High-pressure methane jets, which can be ignited, are affected by the presence of obstacles, which can influence cloud extension and consequently the safe area for people and process components. In this work it is presented a realistic case study which shown the interaction between a high-pressure methane jet and an obstacle constituted by a spherical tank positioned in front of the jet source. The purposes are to: at first, identify the geometrical parameters for this scenario which can affect the extension of the lower flammability limit cloud and, then, develop a criterion allowing the prediction of the tank behaviour with respect to the jet cloud: when the tank blocks the jet (namely, wall effect) and when the jet goes beyond the tank (namely, obstacle effect). Furthermore, another important wanted result was to derive an analytical correlation which allows to predict the maximum axial extent of the lower flammability limit cloud. At the end, it was identified the tank legs influence on the flammable cloud extension. In order to study the effect caused by the presence of the obstacle, it was necessary the use of Computational Fluid Dynamics that can properly consider the presence of an obstacle. To do this, the entire scenario was modelled with the widely used commercial software ANSYS® Fluent®.File | Dimensione | Formato | |
---|---|---|---|
Thesis Carminati_Parisi_PDF.pdf
accessibile in internet per tutti
Descrizione: Thesis Carminati_Parisi
Dimensione
3.25 MB
Formato
Adobe PDF
|
3.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/148488